
Week 7: Model Ensembles

Instructor: Sergey Levine

1 Boosting recap

Recall that the boosting algorithm looks like this

Algorithm 1 AdaBoost

1: for t in 1, . . . , T (to create ensemble with T classifiers) do
2: if t = 1 then
3: Initialize weights to D1,i = 1/N
4: else
5: Set weights Dt,i ∝ Dt−1,i exp(−αt−1y

iht−1(xi))
6: end if
7: Train hypothesis ht by minimizing error D weighted by Dt

8: Evaluate weighted error εt =
∑N
i=1Dt,iδ(ht(x

i) 6= yi)

9: Put a weight αt = 1
2 ln

(
1−εt
εt

)
on ht

10: end for
11: Final classifier is given by H(x) = sign(

∑T
t=1 αtht(x))

There are two decisions for AdaBoost that we need to analyze: the choice of
weight update for weights Dt and the choice of classifier weight αt. The weight
update is

Dt+1,i =
Dt,i exp(−αtyiht(xi))∑N

i′=1Dt,i′ exp(−αtyi′ht(xi′))
=

1

Zt
Dt,i exp(−αtyiht(xi)),

where we’ve defined Zt =
∑N
i′=1Dt,i′ exp(−αtyi

′
ht(x

i′)). The choice of αt is:

αt =
1

2
ln

(
1− εt
εt

)

2 Boosting: formal result

We can show that this choice of αt actually minimizes the error of the final
ensemble classifier on the training set. To start, note that we can bound the
total number of errors on the dataset made by the final classifier H(x), if we let
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f(x) =
∑T
t=1 αtht(x), such that H(x) = sign(f(x)):

1

N

N∑
i=1

δ(yi 6= H(xi)) ≤ 1

N

N∑
i=1

exp(−yif(xi)).

This interesting relationship follows from the fact that when yif(xi) > 0 and
the point is classified correctly, exp(−yif(xi)) > 0 and δ(yi 6= H(xi)) = 0.
So for all correctly classified points, the right hand side is larger than the left
side. For all incorrectly classified points, we have exp(−yif(xi)) > 1, since the
exponential of a positive number is greater than 1, while δ(yi 6= H(xi)) = 1. So
that means that for both the correct and incorrect points, the right hand side
is bigger than the left, and the bound holds.

Now we can express the bound in terms of αt as follows. First, let’s substitute∑T
t=1 αtht(x) for f(x) into the right-hand side:

1

N

N∑
i=1

exp(−yif(xi)) =
1

N

N∑
i=1

exp

(
−yi

T∑
t=1

αtht(x)

)

=
1

N

N∑
i=1

T∏
t=1

exp(−αtyiht(x))

Now recall that the weights at step T + 1 would be given by

DT+1,i =
1

ZT
DT,i exp(−αT yihT (xi))

That means that we can rearrange the terms to get

ZTDT+1,i = DT,i exp(−αT yihT (xi))

We can substitute exactly the same thing for DT,i to get

ZTDT+1,i =
1

ZT−1
DT−1,i exp(−αT−1y

ihT−1(xi)) exp(−αT yihT (xi))

and then again push ZT−1 to the left side to get

ZT−1ZTDT+1,i = DT−1,i exp(−αT−1y
ihT−1(xi)) exp(−αT yihT (xi))

We can keep doing this for all t to get[
T∏
t=1

Zt

]
DT+1,i =

1

N

T∏
t=1

exp(−αtyiht(xi))

Since this holds for all i, we can sum both sides over i to get[
T∏
t=1

Zt

]
N∑
i=1

DT+1,i =
1

N

N∑
i=1

T∏
t=1

exp(−αtyiht(xi))
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Note however that DT+1,i is normalized, so the sum on the left side is just one,
which gives us

T∏
t=1

Zt =
1

N

N∑
i=1

T∏
t=1

exp(−αtyiht(xi))

Substituting this into our bound above, we have

1

N

N∑
i=1

δ(yi 6= H(xi)) ≤ 1

N

N∑
i=1

exp(−yif(xi)) =
1

N

N∑
i=1

T∏
t=1

exp(−αtyiht(xi)) =

T∏
t=1

Zt

This is interesting, because it shows that we can minimize our overall training
error simply by minimizing the product

∏T
t=1 Zt. At iteration t of boosting,

our choice of αt only affects Zt, so we simply need to minimize Zt. I won’t go
through this derivation in the lecture, but we can in fact show that if we set

αt =
1

2
ln

(
1− ε
ε

)
,

we can minimize Zt. This requires taking the derivative of Zt and setting it to
zero. To get some intuition for this, note that

Zt =

T∑
t=1

Dt,i exp(−αtyiht(xi)),

and for some i, yiht(x
i) is positive, while for others, it’s negative. So we have to

choose αt so as to balance correct and incorrect classifications. Intuitively, if all
samples are correct, then we simply set αt to ∞ to minimize Zt. Incidentally,
the choice of training the classifier ht to minimize error on the weighted dataset
can also be shown to minimize Zt and therefore the bound on the training error.
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