
Week 7: Model Ensembles

Instructor: Sergey Levine

1 Ensembles

So far, every time we’ve faced a classification problem where the decision bound-
ary is complex, our solution has been to introduce more expressive learning
methods: we can add features to a linear classifier, use decision trees, use SVMs
with kernels, or try neural networks. The trouble is that the more expressive
classifiers have a tendency to overfit more, and introduce considerable complex-
ity.

In this unit, we’ll discuss an alternative approach, where instead of designing
a better classifier, we can instead ensemble together multiple classifiers to get
a better solution. Imagine that we need to fit a decision tree to a 2D dataset
where the positive examples are all inside a circle, and the negative examples
are all outside (see lecture slides). A decision tree that always splits along one
of the two axes will always produce a jagged and inaccurate fit, until it has so
many leaves that it starts to overfit.

What if we instead fit many small decision trees and have them vote? We
need each decision tree to be responsible for different parts of the data (or else
they’ll all vote exactly the same way), but if we can get them to each specialize
to some part of the space, we can simply take the fraction of classifiers that
vote affirmatively as an estimate of the probability that a given point is positive
(y = +1) or negative (y = −1). We’ll cover two ensemble methods: bagging
and boosting. Both have the same structure: they incrementally add additional
classifiers to the ensemble, and then have them vote to determine the label for
a new datapoint. Here is an example structure of an ensemble method:

Algorithm 1 Ensemble method

1: for t in 1, . . . , T (to create ensemble with T classifiers) do
2: Create dataset Dt by reweighting the full training set D
3: Train hypothesis ht by minimizing error or maximizing likelihood of Dt
4: Put a weight αt on ht
5: end for
6: Final classifier is given by H(x) = sign(

∑T
t=1 αtht(x))

1



2 Bagging

Bagging stands for “bootstrap aggregation,” and corresponds to a very simple
ensemble method. In bagging, in order to get the different classifiers to learn
slightly different parts of the data, we simply resample the dataset randomly
with replacement, and train each weak classifier on a different resampling of the
data. Randomly resampling the dataset simply puts integer weights on each
datapoint. Specifically, in bagging, we resample with replacement, which means
that for each i ∈ {1, 2, . . . , N}, we choose a random index j ∈ {1, 2, . . . , N} and
set the ith datapoint in Dt to be the jth datapoint in D. Some datapoints will
be picked more than once, and some might never be picked, so each datapoint
gets an integer weight.

Once we’ve trained K classifiers on these random resamplings of the data,
we can produce a single answer simply by averaging together their votes (so
αt = 1/T ). We can also conveniently use the fraction of classifiers that vote for
one class as a probability score for that class, providing a natural quantification
of uncertainty. Regions where all classifiers agree are high-confidence classi-
fications, while regions where many disagree end up fuzzier. So the bagging
algorithm looks like this:

Algorithm 2 Bagging

1: for t in 1, . . . , T (to create ensemble with T classifiers) do
2: Create dataset Dt by sampling N points from D with replacement
3: Train hypothesis ht by minimizing error or maximizing likelihood of Dt
4: Put a weight αt = 1/K on ht
5: end for
6: Final classifier is given by H(x) = sign(

∑T
t=1 αtht(x))

3 Sidenote: random forests

One very effective variant of bagging combines bagging with decision trees. This
is called random forests. Random forests are bagged decision trees, typically
with a limit on their maximum depth for simplicity. However, even with bagging,
the different trees might still end up too similar. A simple heuristic is to also
randomly sample the features at each split of the tree, to prevent all trees from
splitting on the same highly informative feature. So instead of choosing the
optimal split, we randomly sample a subset of the features, and choose the
optimal split among those (a good choice for the number of features is

√
K,

where K is the number of features). An even more extreme example is called
extremely randomized trees: these simply sample 1 of the K features, instead of
using a criterion like information gain. Because many trees get to vote (typically
hundreds or thousands), even these very weak learners tend to perform well.

2



4 Boosting

Before describing boosting, let’s step back and revisit the idea of a weak classifier
(or “weak learner” as it is more commonly called in the context of ensemble
methods). A weak learner is a learner with a lot of bias: a simple learner
like logistic regression with only linear features, näıve Bayes, or a very shallow
decision tree (or even a “decision stump” – a tree with just one decision). We
like weak learners because they usually don’t overfit and are often very quick and
easy to implement. But we also don’t want to use them all the time, because they
can’t learn very complex functions. So the purpose of an ensemble method is to
allow weak learners to learn complex functions by working together. Before we
go further, we need a more formal definition of a weak learner. For the purpose
of this discussion, we’ll define a weak learner as a classifier h(x) that outputs
+1 if it predicts the label is positive and −1 if it predicts the label is negative.
The weak learner must be a learner: that is, it must be able to learn at least
better than random guessing. This means that we must have:

N∑
i=1

yih(xi) > 0.

A weak learner that satisfies these conditions can be used for boosting, which
we’ll describe next.

Boosting is a more sophisticated ensemble method where, instead of resam-
pling the data randomly for each classifier, we’ll instead reweight the data based
on the mistakes of past classifiers: that is, for the kth classifier, we’ll ask it to
prioritize getting the right answer for exactly those datapoints that previous
classifiers got wrong. We’ll then weight the classifier by its performance, so that
classifiers that do better get more “votes.” The specific method we’ll cover is
called AdaBoost. See the lecture notes for a visual illustrate of multiple rounds
of boosting.

AdaBoost has the same structure as bagging, but a different choice for the
datapoint weights and classifier weights:

Algorithm 3 AdaBoost

1: for t in 1, . . . , T (to create ensemble with T classifiers) do
2: if t = 1 then
3: Initialize weights to D1,i = 1/N
4: else
5: Set weights Dt,i ∝ Dt−1,i exp(−αt−1y

iht−1(xi))
6: end if
7: Train hypothesis ht by minimizing error D weighted by Dt

8: Evaluate weighted error εt =
∑N
i=1Dt,iδ(ht(x

i) 6= yi)

9: Put a weight αt = 1
2 ln

(
1−εt
εt

)
on ht

10: end for
11: Final classifier is given by H(x) = sign(

∑T
t=1 αtht(x))

3



There are two decisions for AdaBoost that we need to analyze: the choice
of weight update for weights Dt and the choice of classifier weight αt. But first,
let’s briefly go over what it means to train a classifier on a weighted dataset. In
the discussion of bagging, we saw how weighting datapoints by integer values
corresponds simply to training a classifier on a new dataset where some points
occur more than once. In general, the counts on each datapoint do not have
to be integers. How weights enter into different learning algorithms varies, but
it’s typically straightforward: in näıve Bayes, instead of evaluating counts for
estimating conditional distributions, we evaluate weighted counts. In logistic
regression, we weight the gradient of each point by its weight. In decision trees,
we weight the information gain by the weight on each datapoint.

5 Boosting: intuition

First, let’s examine the AdaBoost weight update:

Dt+1,i ∝ Dt,i exp(−αtyiht(xi)).

That means that

Dt+1,i =
Dt,i exp(−αtyiht(xi))∑N

i′=1Dt,i′ exp(−αtyi′ht(xi′))
=

1

Zt
Dt,i exp(−αtyiht(xi)),

where we’ve defined Zt =
∑N
i′=1Dt,i′ exp(−αtyi

′
ht(x

i′)). Note that we have
yiht(x

i) = 1 if ht classifies xi correctly, and −1 otherwise. Since we negate
this quantity, the weight update increases the weight on incorrectly classified
datapoints, and decreases the weight on correctly classified datapoints. The
amount by which the weights are increased or decreased is determined by αt:
high-weight classifiers will change the weights more than low-weight classifiers.

Now let’s look at the weight αt. First, we compute the weighted error of our
classifier:

εt =

N∑
i=1

Dt,iδ(ht(x
i) 6= yi)

If the classifier is perfect, we’ll have ε = 0, and if it’s perfectly wrong, we get
ε = 1. Realistically, the worst classifier we should get is a random one, so that
ε = 0.5 – if it’s any worse, we can always do better just by flipping a coin! The
classifier weight is

αt =
1

2
ln

(
1− εt
εt

)
.

As the error decreases, αt grows, approaching infinity as εt → 0. This makes
sense: if we’re lucky enough to get a perfect classifier, we should trust it a lot.

4


	Ensembles
	Bagging
	Sidenote: random forests
	Boosting
	Boosting: intuition

