
Week 9: Dimensionality Reduction

Instructor: Sergey Levine

1 Dimensionality Reduction Recap

In the last lecture, we saw how we could construct a probabilistic model for di-
mensionality reduction. In this model, as with all other generative probabilistic
models, our objective is to maximize the log-likelihood of the data:

log p(D) =

N∑
i=1

log p(xi),

where the data is D = {x1, . . . ,xN} (so we’re doing unsupervised learning –
no labels), and the particular probabilistic model we use is a Gaussian model

p(x) ∼ N (Uz + µ0, σ
2) (µ0 = 1

N

∑N
i=1 xi), where we model x as originating

from a Gaussian distribution with the mean given by Uz, where z is the low-
dimensional point that corresponds to x, and U is our basis (which we wish to
learn).

This model basically says that any information in the datapoint x that is
not modeled by Uz + µ0 is the consequence of Gaussian noise. The resulting
objective can be written out as

log p(D) =

N∑
i=1

−1

2
||Uzi − x̄i||2 + const,

which means that our goal is to find a basis U that allows us to reconstruct
the high-dimensional datapoints xi from their low-dimensional features zi with
the minimum error: that is, we wish to retain as much information as possible
about the original datapoints.

When defining our hypothesis space, we also constrained the columns of U,
which we call u1, . . . ,uK , to be orthonormal, such that uT

i ui = 1 and uT
i uj = 0

for i 6= j. We saw that these constraints do not in any way limit the information
about x that we can pack into z, so it is fine to impose these constraints without
loss of information (without increasing the error/decreasing the probability).

When U is orthonormal, we know that zi = UT (xi − µ0), and by using
x̄i = xi − µ0 for convenience, we showed that we can rewrite the maximum
likelihood optimization of U as

U← arg min
U

1

2N

N∑
i=1

||Uzi − x̄i||2 such that uT
i ui = 1 and uT

i uj = 0 ∀i 6= j,
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which reduces to

U← arg min
U
−1

2

K∑
k=1

uT
k Σuk such that uT

i ui = 1 and uT
i uj = 0 ∀i 6= j,

where Σ = 1
N

∑N
i=1 x̄i. This simplification follows directly from substituting

zi = UT x̄i and expanding the square || · ||2, following by the identity

x̄T
i UUT x̄i =

K∑
k=1

uT
k x̄ix̄

T
i uk.

To solve this optimization problem, first, let’s see what happens in the simple
case where K = 1 and U has just one column. Add in the Lagrange multipliers
(we multiply by 1

2 for convenience):

L(u, λ) = −1

2
uT Σu +

1

2
λ(uTu− 1).

Now take the derivative:

dL
du

= −Σu + λu = 0⇒ Σu = λu

That’s interesting! It’s not immediately straightforward to solve for u, until we
recognize that this is exactly the definition of eigenvectors and eigenvalues! So
u must be an eigenvector of Σ, and λ must be an eigenvalue. All eigenvectors
u will satisfy the constraint, so if we substitute the solution into the objective,
we get

min
u
−1

2
uT Σu = min

u
−1

2
uTuλ = min

u
−1

2
λ,

where the last step follows from the fact that uTu = 1. So our goal is simply to
maximize the eigenvalue that corresponds to the eignevector u! Therefore, we
have only one basis vector, it should be the eigenvector of Σ that corresponds
to the largest eigenvalue.

What happens if we have more than one basis vector (K > 1)? Well, we
could repeat the same exercise with Lagrange multipliers, but we could observe
that, were it not for the orthogonality constraints uT

i uj = 0 for i 6= j, the rest
of the Lagrangian factorizes additively (that is, all uk vectors are independent),
so we always have

Σuk = λkuk,

and we always want to maximize the corresponding eigenvalues λk, since we
have

−1

2

K∑
k=1

uT
k Σuk = −1

2

K∑
k=1

λk.

Therefore, since all uk vectors must be orthogonal, they must all be different
eigenvectors, and we should pick the ones that correspond to the K largest
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eigenvalues. We therefore recover the simple algorithm for obtaining the opti-
mal basis to maximize log p(D): compute an eigenvalue decomposition of the
empirical covariance

Σ =
1

N

N∑
i=1

(xi − µ0)(xi − µ0)T ,

and then populate the columns of U with the eigenvectors of Σ corresponding to
the K largest eigenvalues. This is called principal component analysis (PCA).

2 Analyzing the Error

We saw how we could figure out the best basis U. But how do we choose the
dimensionality K? Oftentimes, we might just choose K based on the constraints
of our problem. For example, if we want to visualize our data in 2D or 3D,
we might choose K = 2 or K = 3 to make the reduced dimension points zi
interpretable. However, for other applications, like preprocessing our data for
supervised learning, we might want to choose K so as to retain some fraction
of the information in the data. The typical unit of measure for this information
is “variance.” First, we’ll introduce an intuitive idea of what this means, and
then we’ll do some math to see how we can compute it.

In the lecture slides (slide 4) we can see an example of a 2D dataset and
a visualization of two principal components. The biggest principal component
(eigenvector with the largest eigenvalue) points along the direction in which the
data is most spread out. If we were to fit a covariance matrix Σ to this data, this
direction would correspond to the longest axis of the unit variance ellipse. Thus,
the direction with the largest variance is the first principal component. The
second principal component is orthogonal to the first (eigenvectors are always
orthogonal), and points in the direction with the second largest variance.

If we keep one of the two principal components (meaning we choose K = 1),
the error we incur will correspond to the distance between the actual 2D points
and the line given by the first principal component. The expected squared error
is the variance, hence the error is equal to the sum of the variances along all of
the principal components we didn’t choose.

The variance along each principal component uk is given by

E[(uT
k x̄i)

2] =
1

N

N∑
i=1

(uT
k x̄i)

2,

which is simply the equation for the variance of the random variable uT
k x̄, which

is zero mean by construction (because x̄ = x − µ0) and corresponds to the
projection of the data onto the principal component uk. However, note that
this can be written as

E[(uT
k x̄i)

2] =
1

N

N∑
i=1

(uT
k x̄i)

2 =
1

N

N∑
i=1

uT
k x̄ix̄

T
i uk = uT

k Σuk.
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This is exactly the quantity that PCA maximizes! So the goal of PCA is to find
principal components that explain as much variance as possible in the data.
Furthermore, we saw above that, since Σuk = λkuk, we have

uT
k Σuk = λku

T
k uk = λk,

so the variance along the principal component uk is exactly the corresponding
eigenvalue λk. This is another explanation for why we choose the eigenvectors
that correspond to the largest eigenvalues.

To understand how much of the variance is explained by the first K eigen-
values, it helps to think about all the other eigenvectors that we don’t choose. If
we consider the full basis Ū, which consists of U followed by all the other D−K
eigenvectors, we know that the total variance is simply the variance along all of
the eigenvectors:

D∑
k=1

ūT
k Σūk =

K∑
k=1

uT
k Σuk +

D∑
k=K+1

ūT
k Σūk.

But because this is the total variance, we also know that it doesn’t matter which
orthonormal basis Ū we select, since any orthonormal basis with D dimensions
spans the entire space. In particular, we know that

D∑
k=1

ūT
k Σūk =

D∑
k=1

eTk Σek,

where ek is a vector that is 0 in all entries except k, which is 1 (the kth canonical
vector). Using our previous identity, we know that

D∑
k=1

eTk Σek =
1

N

N∑
i=1

D∑
k=1

eTk x̄ix̄
T
i ek =

1

N

N∑
i=1

x̄T
i II

T x̄i =
1

N

N∑
i=1

x̄T
i x̄i =

1

N

N∑
i=1

D∑
k=1

x̄2
i,k,

which incidentally is the equation for the total variance of all of the dimensions.
So if we want to know what portions of the total variance is explained by the
first K eigenvectors, we can compute this as

explained variance =

∑K
k=1 u

T
k Σuk

1
N

∑N
i=1

∑D
k=1 x̄

2
i,k

.

The derivation above will also be useful for a problem in homework 4. But for
choosing K, what we might do is choose a target explained variance (e.g. 90%),
and pick the K that makes the above ratio greater than our target.

3 Singular Value Decomposition

Computing a full eigenvalue decomposition of the covariance matrix Σ can be
used to obtain the K largest eigenvectors and perform PCA. But in practice,
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a more efficient way to perform PCA is to use something called singular value
decomposition (SVD), which does not require even forming the full covariance
Σ. This can be particularly useful if the dimensionality of x is extremely large,
making an eigenvalue decomposition expensive. For example, x might represent
an image with millions of pixels, or a 3D mesh with millions of vertices.

SVD generalizes the idea of eigenvalues to non-square matrices, and is based
on the idea that any N ×D matrix X can be decomposed according to

X︸︷︷︸
N×D

= W︸︷︷︸
N×N

S︸︷︷︸
N×D

VT︸︷︷︸
D×D

.

Here, W and V are both orthonormal, and S is a diagonal matrix, with the
off-diagonal entries all zero. If N 6= D, which is true in general, S is not square,
so it will be padded with 0 on the bottom or on the right. The diagonal entries
of S are called the singular values σk ≥ 0, and there are min(N,D) such values.

In the case of PCA, we’ll choose X to be a matrix where each row is a
datapoint x̄i, such that, and the whole matrix is divide by

√
N (we’ll see why

in a second!):

X =
1√
N


x̄T
1

x̄T
2

·
·

x̄T
N


In that case, XTX = 1

N

∑N
i=1 x̄ix̄

T
i by the definition of matrix multiplication,

and we have
Σ = XTX = VSTWTWSVT .

Recall, however, that both W and V are orthonormal, so we can multiply both
sides by V on the right side and simplify to get:

XTX = VSTWTWSVT

XTXV = VSTWTWSVTV

XTXV = VSTWTWS

XTXV = VSTS

Size S is diagonal with entries σk, STS is also diagonal with entries σ2
k, which

we’ll denote as Λ. Substituting in Σ = 1
NXTX, we get

ΣV = VΛ⇒ ΣVk = Vkσ
2
k.

We see therefore that the columns of V are the eigenvectors of Σ, and the
eigenvalues correspond to the squared singular values. So instead of performing
a full eigenvalue decomposition on Σ, we can simply take the columns of V that
correspond to the largest singular values σk.
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