
Week 9: Dimensionality Reduction

Instructor: Sergey Levine

1 Dimensionality Reduction

In the preceding lectures, we discussed clustering. One view of clustering is that
it’s a way to summarize a complex real-valued datapoint x ∈ RD with a single
categorical variable y ∈ {1, . . . ,K}. This could be useful for understanding and
visualizing the structure in the data, as well as a preprocessing step for other
learning algorithms. For example, we could build a very simple classifier on top
of y instead of dealing with all the complexity of x. In this lecture, we’ll discuss
another way to simplify complex, high-dimensional data for visualization or
subsequent (supervised learning), where instead of summarizing the datapoint
x with a categorical variable y, we instead summarize it with a smaller real-
valued vector z. For example, x might represent all of the pixels in an image
of a face, or all of the vertices in a 3D scan of a person’s body – thousands
or millions of dimensions – while z might consist of only a small number of
parameters, such as the person’s height and weight, or the direction the face
in the image is pointing. Summarizing continuous high-dimensional datapoints
with continuous low-dimensional datapoints is called dimensionality reduction.
The lecture slides show a few examples of dimensionality reduction problems.

2 Dimensionality Reduction as Feature Learn-
ing

One way to look at dimensionality reduction is in terms of features. Recall that
for most of the algorithms we discussed, we operate not on the raw input x,
but on some features h(x). For example, a linear regression model might make
predictions according to

y = w · h(x),

and logistic regression might output probabilities according to

p(y = 1) =
1

1 + exp(−w · h(x))
.

So far, we’ve usually taken the feature function h(x) to be something that maps
x to a higher dimensional space – for example by appending a bias feature 1,
adding higher-order monomials such as x2

1,x2x1,x
2
2, or adding other functions

1

of x. Adding more expressive features can reduce bias by allowing the algorithm
to learn more complex functions, like higher order polynomials. But what if the
problem is not bias but variance? Can we use the feature function to take away
dimensions from the data, so that the weights w are lower dimensional and we
overfit less? Indeed we can. We could do this manually, or we could devise an
automatic method that summarizes the data with a lower-dimensional vector
while preserving as much information as possible.

As with all machine learning problems, we need a dataset, a hypothesis
space, an objective, and an algorithm. We will be doing unsupervised learning,
so our dataset consists of just the inputs x ∈ RD: D = {x1, . . . ,xN}. This is
convenient because then we can use the same method to reduce dimensionality
for supervised learning, visualize data by reducing its dimensionality to 2 or 3,
etc. We also need a hypothesis space. There are a few choices, but we’ll start
with a simple linear projection: we’ll say that our goal is to learn a set of basis
vectors u1, . . . ,uK so that the features are given by

h(x) =

u1 · x
u2 · x
. . .

uM · x

 .
Then we can summarize a D-dimensional vector x with a K-dimensional feature
vector h(x). For convenience, we’ll zj = uj · x, so that h(x) = [z1, . . . , zK]T =
z. Using simple linear projections will provide us with an extremely efficient
algorithm, if we are a little bit careful in how we choose u1, . . . ,uK .

First, note that if we scale uj by some constant c, then zj scales by the
same constant. This is not very interesting – we might as well pick one scale for
uj and stick with it, since changing the scale doesn’t change the features in an
interesting way. So we’ll just force ||uj || = 1. This also means that uT

j uj = 1.
The second constraint we’ll impose is a bit nuanced, but it also makes sense:
we’ll force uT

j ui = 0 for all i 6= j. Why? Well, imagine that uT
j ui 6= 0, we know

that we can decompose ui into two vectors, such that ui = u0
i + u1

i , where u0
i

is the portion of ui that is orthogonal to uj , such that uT
j u

0
i = 0. Then the

weight zi will have a portion that is linearly depend on zj – that is, part of zi will
contain the same information as zj . Specifically, we’ll have zi = u1

i ·x+u0
i ·ujzj .

Notice that the second part doesn’t really contribute any new information – it
doesn’t even depend on the input x! So we might as well force uT

i uj = 0 and
keep all of the basis vectors orthogonal. This will also make it very convenient
to obtain the best basis vectors later.

So, to summarize, our hypothesis class consists of K vectors u1, ·,uK , such
that uT

i ui = 1 and uT
i uj = 1 when i 6= j. We can arrange these vectors into a

matrix
U = [u1, . . . ,uK].

This matrix orthonormal: the columns are all orthogonal and unit length. Our
features are given by

h(x) = UTx

2

In the sequel, we’ll change this definition a little bit. Instead of setting h(x) =
UTx, we’ll instead set

h(x) = UT (x− µ0),

where µ0 = 1
N

∑N
i=1 xi (the empirical mean of the data). The reason for this

seems a little mysterious at first, but it will become a bit more apparent later.
Crucially, this change adds only a constant to the features, so functionally they
will behave mostly the same way.

3 Probabilistic Model of Dimensionality Reduc-
tion

Now that we have a hypothesis class, we’ll need an objective. As with clustering,
a good unsupervised objective is the log likelihood:

log p(D) =

N∑
i=1

log p(x).

We need to pick a distribution p(x). Since x ∈ RD, a good choice would be a
Gaussian, just like in the case of linear regression, although now we are modeling
x, not y. In this Gaussian, we’ll set the mean to be µ = Uz + µ0. We’ll use
unit variance. That way, the log probability is given by

log p(D) =

N∑
i=1

D∑
j=1

−1

2
((Uzi)j − (xi,j − µ0,j))

2 + const.

We can write this in vector notation as

log p(D) =

N∑
i=1

−1

2
||Uzi − (xi − µ0)||2 + const.

Why did we choose µ = Uz + µ0? Well, if we maximize the log-likelihood with
respect to zi by taking the derivative and setting it to zero, we recover the
familiar normal equations, as is typically the case in linear regression:

zi = (UTU)−1UT (x− µ0).

However, we know that U is orthonormal, and therefore UTU = IK×K , so we
simply have

zi = UT (x− µ0).

So we see that µ = Uz+µ0 is the optimal setting for the mean of this model for
the hypothesis space that we defined previously, and this also illustrates why
we chose U to be orthonormal. How convenient!

Now we have a hypothesis space and an objective, so all that remains is to
devise an algorithm that can find the best orthonormal basis matrix U that will
maximize the log-likelihood of the dataset.

3

4 Optimizing the Basis: Principal Component
Analysis

Now we are ready to define the optimization problem and devise an algorithm.
Since the log-likelihood is the negative of the norm of Uzi − (xi − µ0), we can
conveniently write the optimization over U as a minimization:

U← arg min
U

N∑
i=1

1

2N
||Uzi − x̄i||2 such that uT

i ui = 1 and uT
i uj = 0 ∀i 6= j

Where we use x̄i = xi − µ0 and added a division by N (this will be convenient
later). We can rearrange this problem since we know that zi = UT x̄:

N∑
i=1

1

N2
||Uzi − x̄i||2 =

N∑
i=1

1

N2
||UUT x̄i − x̄i||2

=

N∑
i=1

1

N2
x̄T
i UUTUUT x̄i −

1

N
x̄T
i UUT x̄i +

1

2N
x̄T
i x̄i.

Using the fact that U is orthonormal to simplify the initial sum, we get

N∑
i=1

1

2N
||Uzi − x̄i||2 =

N∑
i=1

1

2N
x̄T
i UUTUUT x̄i −

1

N
x̄T
i UUT x̄i +

1

2N
x̄T
i x̄i

=

N∑
i=1

1

2N
x̄T
i UUT x̄i −

1

N
x̄T
i UUT x̄i +

1

2N
x̄T
i x̄i

=

N∑
i=1

− 1

2N
x̄T
i UUT x̄i +

1

2N
x̄T
i x̄i

Now, if we consider the first term in the sum, we can write it out like this:

x̄T
i UUT x̄i =

K∑
k=1

uT
k x̄ix̄

T
i uk,

where uk is the kth column of U. Checking this is left as an exercise, but it can
be checked simply by writing out the formula for vector-matrix multiplication

4

as a summation. Now, we can move the sum inside the product to get:

N∑
i=1

1

2N
||Uzi − x̄i||2 =

N∑
i=1

− 1

2N
x̄T
i UUT x̄i +

1

2N
x̄T
i x̄i

=

N∑
i=1

− 1

2N

K∑
k=1

uT
k x̄ix̄

T
i uk +

1

2N
x̄T
i x̄i

= − 1

2N

K∑
k=1

uT
k

N∑
i=1

[x̄ix̄
T
i]uk +

N∑
i=1

1

2N
x̄T
i x̄i

Note that

1

N

N∑
i=1

x̄ix̄
T
i =

1

N

N∑
i=1

(xi − µ0)(xi − µ0)T = Σ,

where Σ is the empirical covariance of the data that we saw before when we
discussed multivariate Gaussians! So our objective becomes

N∑
i=1

1

2N
||Uzi − x̄i||2 = −1

2

K∑
k=1

uT
k Σuk + const,

where the constant doesn’t depend on U. Going back to our optimization, we
therefore have

U← arg min
U
−1

2

K∑
k=1

uT
k Σuk such that uT

i ui = 1 and uT
i uj = 0 ∀i 6= j.

Now we’re ready to take the derivative and set it to zero, but we have to take
care of the constraints. Recall that we can handle constraints using Lagrange
multipliers! First, let’s see what happens in the simple case where K = 1 and
U has just one column. Add in the Lagrange multipliers (we multiply by 1

2 for
convenience):

L(u, λ) = −1

2
uT Σu +

1

2
λ(uTu− 1).

Now take the derivative:

dL
du

= −Σu + λu = 0⇒ Σu = λu

That’s interesting! It’s not immediately straightforward to solve for u, until we
recognize that this is exactly the definition of eigenvectors and eigenvalues! So
u must be an eigenvector of Σ, and λ must be an eigenvalue. All eigenvectors
u will satisfy the constraint, so if we substitute the solution into the objective,
we get

min
u
−1

2
uT Σu = min

u
−1

2
uTuλ = min

u
−1

2
λ,

5

where the last step follows from the fact that uTu = 1. So our goal is simply to
maximize the eigenvalue that corresponds to the eignevector u! Therefore, we
have only one basis vector, it should be the eigenvector of Σ that corresponds
to the largest eigenvalue.

What happens if we have more than one basis vector (K > 1)? Well, we
could repeat the same exercise with Lagrange multipliers, but we could observe
that, were it not for the orthogonality constraints uT

i uj = 0 for i 6= j, the rest
of the Lagrangian factorizes additively (that is, all uk vectors are independent),
so we always have

Σuk = λkuk,

and we always want to maximize the corresponding eigenvalues λk, since we
have

−1

2

K∑
k=1

uT
k Σuk = −1

2

K∑
k=1

λk.

Therefore, since all uk vectors must be orthogonal, they must all be different
eigenvectors, and we should pick the ones that correspond to the K largest
eigenvalues. We therefore recover the simple algorithm for obtaining the opti-
mal basis to maximize log p(D): compute an eigenvalue decomposition of the
empirical covariance

Σ =
1

N

N∑
i=1

(xi − µ0)(xi − µ0)T ,

and then populate the columns of U with the eigenvectors of Σ corresponding
to the K largest eigenvalues. This is called principal component analysis.

6

	Dimensionality Reduction
	Dimensionality Reduction as Feature Learning
	Probabilistic Model of Dimensionality Reduction
	Optimizing the Basis: Principal Component Analysis

