
Week 8: Clustering

Instructor: Sergey Levine

1 Unsupervised Learning

So far, we’ve discussed a variety of supervised learning algorithms: algorithms
that predict a label y given attributes x. In this next unit, we will study
unsupervised learning methods. In contrast to supervised learning, we won’t
have labels y, only inputs x. Our goal then is not to predict a label, but rather
to recover the structure in the data. This structure can then be used for a
variety of subsequent applications: we can use it to try to understand something
about the phenomenon that gives rise to the data, visualize the data to make
it easier to interpret, or use the learned structure as the basis for subsequent
(supervised) learning methods. This latter technique is sometimes referred to
as semi-supervised learning. We’ll see some specific examples of applications in
later lectures.

2 Clustering

The first class of unsupervised learning methods we’ll study will be clustering
methods. In clustering, our goal is to recover a very particular structure. Our
data will consist of real-valued vectors x ∈ RD, and our goal will be to find a
small number of clusters that describe the data distribution: that is, group the
data into a small set of “groups.” Some example applications in practice might
include clustering customers of an online service based on their usage habits to
identify particular categories or types of customers, or learning the structure of
web traffic in order to be able to detect anomalous and potentially malicious
activity (we’ll talk about this later when we discuss probabilistic clustering).

In order to group our data into a discrete set of groups (clusters), we first
need some definition of what constitutes a “good” group: just like with all other
machine learning problems, we need an objective. If we assume that we have
K clusters C1, . . . , CK , one simple objective might be to minimize the sum of
average intragroup distances per cluster – that is, entries that are assigned to
the same group should all be close to one another:

L(C1, . . . , CK) =

K∑
k=1

∑
xi∈Ck,xj∈Ck

1
2‖xi − xj‖2

‖{i : xi ∈ Ck}‖
.

1



Question. Recall that we need to define the data, the hypothesis space, the
objective, and the algorithm. What is the hypothesis space for this learning
problem?

Answer. Since we are trying to find clusters C1, . . . , CK , one simple way to
parameterize the hypothesize space is to associate a discrete cluster label yi with
each datapoint xi. Here, yi is categorical in the set {1, . . . ,K}, and we have
xi ∈ Ck if and only if yi = k. The choice of y here is intentional – we’ll see the
connection to labels later.

Now all we have to do is design an algorithm that will minimize the distances
objective with respect to the cluster assignments. This is a bit tricky, because
the total number of possible cluster assignments is KN , since each point might
belong to a different cluster, so we can’t possibly evaluate all possible cluster
assignments. In fact, it can be shown that optimal assignment is NP-hard.
However, we can devise an algorithm that is at least locally optimal (just like
we did with neural networks), meaning that it converges to a solution where
reassigning any of the points to a different cluster will make the objective worse.
Unfortunately, we can’t quite use gradient ascent or descent in this case, since
we’re optimizing over discrete variables.

Here is a simple idea for an algorithm: repeatedly search through all the
points and, if there is some cluster that is closer to that point than the one it
is currently in, we’ll simply reassign it to that cluster. Once there is no point
for which reassigning it to a closer cluster is possible, we know that we have
reached a local optimum.

Now, doing this exactly is a bit costly, since we need to step through all N
points each time we want to find a new cluster for each point, so just one iteration
of this simple algorithm is O(N2). But we can do something much less costly:
for each cluster, we’ll define a centroid ck, and then instead of exhaustively
evaluating all distances to all other points for each of the N points, we’ll only
check its distance to the centroids, and assign it to the nearest centroid. Since
we have K centroids and N points, each iteration requires only O(NK) time.
The algorithm then looks like this:

Algorithm 1 K-means clustering

1: Initialize cluster assignments yi with random integers in {1, . . . ,K}
2: while not converged do
3: ck ← 1

‖i:yi=k‖
∑

i:yi=k xi (average all points with yi = k)

4: yi ← arg mink ‖xi − ck‖2 (assign each point to nearest cluster)
5: end while

This algorithm is very simple, and in fact we can prove that it optimizes
the intraclass distances objective. To prove this, we’ll first consider a surrogate

2



objective that includes the centroids ck:

L̂(y1, . . . , yN , c1, . . . , cK) =

K∑
k=1

∑
i:yi=k

‖xi − ck‖2

We’ll start by showing that K-means locally minimizes this objective. K-means
consists of just two steps, and the way we show that it minimizes this objective
is by proving that each individual step decreases the objective. The first step
clearly decreases the objective, because if we hold the cluster assignments fixed
and optimize with respect to ck, we can compute the gradient and solve:

dL̂
dck

= −
∑

i:yi=k

2(xi − ck) = 0⇒
∑

i:yi=k

ck =
∑

i:yi=k

xi ⇒ ck =

∑
i:yi=k xi

‖i : yi = k‖

The second step decreases the objective because we explicitly choose cluster
assignments that will minimize the distance between each xi and the chosen
cluster center ck. So if each step of K-means can only decrease the objective,
then the algorithm will only terminate (converge) once the objective is at a local
minimum.

To show that K-means in fact also minimizes the sum of intracluster dis-
tances, we can show that the sum of intracluster distances is in fact equal to
the surrogate objective used by K-means:

K∑
k=1

∑
xi∈Ck,xj∈Ck

1
2‖xi − xj‖2

‖{i : yi = k}‖
=

K∑
k=1

∑
xi∈Ck,xj∈Ck

1
2‖xi − ck + ck − xj‖2

‖{i : yi = k}‖

=

K∑
k=1

∑
xi∈Ck,xj∈Ck

1
2

[
‖xi − ck‖2 − 2(xi − ck) · (xj − ck) + ‖ck − xj‖2

]
‖{i : yi = k}‖

=

K∑
k=1

∑
xi∈Ck

[
‖xi − ck‖2 −

(xi − ck) ·
∑

xj∈Ck
(xj − ck)

‖{i : yi = k}‖

]
.

However, since ck is the average of the points xj in the cluster k, we must have∑
xj∈Ck

(xj − ck) = 0, so the last term is equal to zero, and therefore we have

K∑
k=1

∑
xi∈Ck,xj∈Ck

1
2‖xi − xj‖2

‖{i : yi = k}‖
=

K∑
k=1

∑
i:yi=k

‖xi − ck‖2.

Therefore, we know that if we minimize the distance to the centroids, we’ll also
minimize the intraclass distance averaged over all of the clusters.

3


	Unsupervised Learning
	Clustering

