CSE446: SVMs
Winter 2015

Luke Zettlemoyer

Slides adapted from Carlos Guestrin
Linear classifiers – Which line is better?
Pick the one with the largest margin!

Margin for point \(j \):
\[
\gamma^j = y^j(w \cdot x^j + w_0)
\]

Max Margin:
\[
\max_{\gamma, w, w_0} \gamma \\
\forall j. y^j (w \cdot x^j + w_0) > \gamma
\]
How many possible solutions?

\[
\max_{\gamma, w, w_0} \gamma \\
\forall j, y^j (w \cdot x^j + w_0) > \gamma
\]

Any other ways of writing the same dividing line?

- \(w \cdot x + b = 0 \)
- \(2w \cdot x + 2b = 0 \)
- \(1000w \cdot x + 1000b = 0 \)
-
- Any constant scaling has the same intersection with z=0 plane, so same dividing line!

Do we really want to max \(\gamma, w, w_0 \)?
Review: Normal to a plane

\[w \cdot x + w_0 = 0 \]

\[x^j = \bar{x}^j + \lambda \frac{w}{\|w\|_2} \]

Key Terms

- \(\bar{x}^j \) -- projection of \(x^j \) onto \(w \)
- \(\frac{w}{\|w\|_2} \) -- unit vector normal to \(w \)

\[\|w\|_2 = \sqrt{\sum_i w_i^2} \]
Idea: constrained margin

\[x^j = \bar{x}^j + \lambda \frac{w}{||w||_2} \]

\[||w||_2 = \sqrt{\sum_i w_i^2} \]

Assume: \(x^+ \) on positive line (\(y=1 \) intercept), \(x^- \) on negative (\(y=-1 \))

\[w \cdot x^+ + w_0 = 1 \]

\[w \cdot (x^- + 2\gamma \frac{w}{||w||_2}) + w_0 = 1 \]

\[w \cdot x^- + w_0 + 2\gamma \frac{w \cdot w}{||w||_2} = 1 \]

\[\gamma \frac{w \cdot w}{||w||_2} = 1 \quad w \cdot w = \sum_i w_i^2 = ||w||_2^2 \]

\[\gamma = \frac{||w||_2}{w \cdot w} = \frac{1}{||w||_2} \]

Final result: can maximize constrained margin by minimizing \(||w||_2 \)!!
Max margin using canonical hyperplanes

\[
\begin{align*}
\max_{\gamma, w, w_0} & \quad \gamma \\
\forall j. y^j (w \cdot x^j + w_0) & > \gamma
\end{align*}
\]

\[
\gamma = \frac{1}{\|w\|_2}
\]

\[
\min_{w, w_0} \frac{1}{2} \|w\|_2^2 \\
\forall j. y^j (w \cdot x^j + w_0) & \geq 1
\]

The assumption of canonical hyperplanes (at +1 and -1) changes the objective and the constraints!
Support vector machines (SVMs)

- Solve efficiently by quadratic programming (QP)
 - Well-studied solution algorithms
 - Not simple gradient ascent, but close

- Decision boundary defined by support vectors

\[
\min_{w,w_0} \frac{1}{2} \|w\|^2 \\
\forall j. y^j (w \cdot x^j + w_0) \geq 1
\]

Non-support Vectors:
- everything else
- moving them will not change \(w \)

Support Vectors:
- data points on the canonical lines
What if the data is not linearly separable?

Add More Features!!!

Can use Kernels…
What about overfitting?

\[\phi(x) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ x_1 x_2 \\ x_1 x_3 \\ \vdots \\ e^{x_1} \\ \vdots \end{pmatrix} \]
What if the data is still not linearly separable?

\[
\min_{w,w_0} \frac{1}{2} \|w\|^2_2 + C \#(\text{mistakes})
\]
\[
\forall j. y^j (w \cdot x^j + w_0) \geq 1
\]

- First Idea: Jointly minimize \(\|w\|_2^2 \) and number of training mistakes
 - How to tradeoff two criteria?
 - Pick \(C \) on development / cross validation

- Tradeoff \#(mistakes) and \(\|w\|_2^2 \)
 - 0/1 loss
 - Not QP anymore
 - Also doesn’t distinguish near misses and really bad mistakes
 - NP hard to find optimal solution!!!
Slack variables – Hinge loss

\[
\min_{w,w_0} \frac{1}{2} \|w\|^2 + C \sum_j \xi_j \\
\forall j. y^j (w \cdot x^j + w_0) \geq 1 - \xi_j, \quad \xi_j \geq 0
\]

Slack Penalty \(C > 0 \):
- \(C = \infty \) \rightarrow have to separate the data!
- \(C = 0 \) \rightarrow ignore data entirely!
- Select on dev. set, etc.

For each data point:
- If margin ≥ 1, don’t care
- If margin < 1, pay linear penalty
Slack variables – Hinge loss

\[
\min_{w,w_0} \frac{1}{2} \|w\|^2 + C \sum_j \xi_j \\
\forall j. y^j (w \cdot x^j + w_0) \geq 1 - \xi_j , \xi_j \geq 0
\]

\[
[x]^+ = \max(x,0)
\]

\[
\min_{w,w_0} \frac{1}{2} \|w\|^2 + C \sum_{j=1}^{N} [1 - y^j (w \cdot x^j + w_0)]^+
\]

Solving SVMs:
- Differentiate and set equal to zero!
- No closed form solution, but quadratic program (top) is concave
- Hinge loss is not differentiable, gradient ascent a little trickier…

Regularization

Hinge Loss
Logistic Regression as Minimizing Loss

Logistic regression assumes:

$$f(x) = w_0 + \sum_i w_i x_i$$

$$P(Y = 1|X = x) = \frac{\exp(f(x))}{1 + \exp(f(x))}$$

And tries to maximize data likelihood, for Y={-1,+1}:

$$P(y^i|x^i) = \frac{1}{1 + \exp(-y^i f(x^i))}$$

$$\ln P(D_Y \mid D_X, w) = \sum_{j=1}^N \ln P(y^j \mid x^j, w)$$

$$= - \sum_{i=1}^N \ln(1 + \exp(-y^i f(x^i)))$$

Equivalent to minimizing log loss:

$$\sum_{i=1}^N \ln(1 + \exp(-y^i f(x^i)))$$
SVMs vs Regularized Logistic Regression

\[f(x) = w_0 + \sum_i w_i x_i \]

SVM Objective:

\[
\arg \min_{w, w_0} \frac{1}{2} \|w\|_2^2 + C \sum_{j=1}^{N} [1 - y^j f(x^j)]_+ \\
\quad \text{[}x\text{]}_+ = \max(x, 0)
\]

Logistic regression objective:

\[
\arg \min_{w, w_0} \lambda \|w\|_2^2 + \sum_{j=1}^{N} \ln(1 + \exp(-y^j f(x^j)))
\]

Tradeoff: same \(l_2 \) regularization term, but different error term
Graphing Loss vs Margin

Logistic regression:

\[\ln(1 + \exp(-y^j f(x^j))) \]

Hinge loss:

\[[1 - y^j f(x^j)]_+ \]

0-1 Loss:

\[\delta(f(x^j) \neq y^j) \]

We want to smoothly approximate 0/1 loss!
What about multiple classes?
One against All

Learn 3 classifiers:
• $+ \text{ vs } \{0,-\}$, weights w_+
• $- \text{ vs } \{0,+\}$, weights w_-
• $0 \text{ vs } \{+,-\}$, weights w_0

Output for x:
$$y = \arg\max_i w_i \cdot x$$

Any problems?
Could we learn this dataset?
Learn 1 classifier: Multiclass SVM

Simultaneously learn 3 sets of weights:

• How do we guarantee the correct labels?
• Need new constraints!

For each class:

$$w^{y^j} \cdot x^j + w_0^{y^j} \geq w^{y'} \cdot x^j + w_0^{y'} + 1, \quad \forall y' \neq y^j, \quad \forall j$$
Learn 1 classifier: Multiclass SVM

Also, can introduce slack variables, as before:

\[
\min_{w,w_0} \sum_y \|w^y\|_2^2 + C \sum_j \xi^j \\
\text{subject to} \quad w^{y^j} \cdot x^j + w_0^{y^j} \geq w^{y'} \cdot x^j + w_0^{y'} + 1 - \xi^j, \quad \forall y' \neq y^j, \quad \xi^j > 0 \quad \forall j
\]

Now, can we learn it?
What you need to know

• Maximizing margin
• Derivation of SVM formulation
• Slack variables and hinge loss
• Tackling multiple class
 – One against All
 – Multiclass SVMs