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Dimensionality reduction

* |nput data may have thousands or millions of
dimensions!
— e.g., text data has ???, images have ???
* Dimensionality reduction: represent data with
fewer dimensions
— easier learning — fewer parameters
— visualization — hard to visualize more than 3D or 4D

— discover “intrinsic dimensionality” of data
* high dimensional data that is truly lower dimensional



Feature selection

e Want to learn f:X—Y
— X=<Xy,.., X >

— but some features are more important than
others

* Approach: select subset of features to be used
by learning algorithm
— Score each feature (or sets of features)
— Select set of features with best score



Greedy forward feature selection algorithm

* Pick a dictionary of features
— e.g., polynomials for linear regression

* Greedy: Start from empty (or simple) set of
features F,=
— Run learning algorithm for current set of features F,
* Obtain h,

— Select next best feature X,

* e.g., X that results in lowest held out error when learning
with F, U {X;}

— Frg <= F, UX}
— Repeat



Greedy backward feature selection algorithm

* Pick a dictionary of features
— e.g., polynomials for linear regression

* Greedy: Start with all features F,=F

— Run learning algorithm for current set of features F,
* Obtain h,

— Select next worst feature X

* e.g., X; that results in lowest held out error learner when
learning with F, - {X}

_Ft+1 eFt'{xi}
— Repeat



Impact of feature selection on
classification of fMRI data pereira et at. ‘0s)

Accuracy classifying
category of word read
by subject

I

Hvoxels mean | subjects
2338 3208 332B 424B 474B 4968 7B 868
H) ().735 0.783 0.817 (.55 0.783 0.75 0.8 0.65 0.75
100 ().742 0.767 0.8 0.533 0.817 .85 0.783 0.6 0.783
200 0.737 0.783 0.783 0.517 0.817 ().883 0.75 .583 0.783
300 0.75 0.8 0.817 0.567 0.833 0.883 0.75 0.583 0.767
400 ().742 0.8 0.783 0.583 .85 ().833 0.75 0.583 0.75
300 0.735 0.833 0.817 0.567 0.833 0.833 0.7 0.55 0.75
1600 ().GOS 0.8 0.817 0.45 0.783 ().833 0.633 0.5 0.7H
all (~2500)  0.638 0.767 0.767 .25 0.75 ().833 0.567 0.433 0.733

Table 1: Average accuracy across all pairs of categories, restricting the procedure to
use a certain number of voxels for each subject. The highlichted line corresponds to the
best mean accuracy. obtained using 300 voxels.



Feature Selection through Regularization

* Previously, we discussed regularization with a

squared norm: /

) = in Loss(0; D 07
0 arg min 0ss(0; D) )\ZL: :

* What if we used an L, norm instead?

0 = inLoss(0; D) + Ay |0,
arg min 0ss(0; D) + z@:| |

e What about L_"?

* These norms work, but are harder to
optimize! And, it can be tricky to set A!!!



Lower dimensional projections

Rather than picking a subset of the features, we can
new ones by combining existing features x, ... X,

2L — wok) + Zw(k) ZT;

New features are linear comblnatlons of old ones
Reduces dimension when k<n

Let’s see this in the unsupervised setting
— just X, butno Y



Linear projection and reconstruction

_ .M (1) L
1= Wo +Zw@- Zi project into

1-dimension ©— e 06— 00—

reconstruction: only know z,,

and projection weights, what



Principal component analysis — basic idea

* Project n-dimensional data into k-dimensional
space while preserving information:

— e.g., project space of 10000 words into 3-
dimensions

— e.g., project 3-d into 2-d

* Choose projection with minimum
reconstruction error



Linear projections, a review

k
)’EZ =X —I— Z Z;l_l]
j=1

* Project a point into a (lower dimensional)
space:
— point: X = (x,...,X,)
— select a basis — set of unit (length 1) basis vectors
(ug,...,u,)
e we consider orthonormal basis:
—u;*u;=1, and u;*u;=0 for i=
— select a center — X, defines offset of space

— best coordinates in lower dimensional space
defined by dot-products: (z,,...,z,), z, = (x-X)®u.



Reminder: Vector Projections

e Basic definitions:
—A.B=|A||B|cos B
—cos 0 = |adj|/|hyp]|

A cos6

 Assume |B|=1 (unit vector)
—A.B=]|A]|cos 6
— So, dot product is length of projection!!!



PCA finds projection that minimizes
reconstruction error

* Given m data points: X' = (x,}...,x.1), i=1...m
* Will represent each point as a projection:

’ 1 m . X2
= (!
~7 = i B/ Z X
X —x—l—z:zju‘7 m
j=1
. PCA: zp = (X' = %) -y
— Given k<n, find (uy,...,u,)

minimizing reconstruction error:

m
error; = Z (x" — )“(Z)Q
1=1



Understanding the
reconstruction error

Note that x' can be represented
exactly by n-dimensional projection:

n
T = Tavy
X =X+ szuj
J=1

Rewriting error:

m

1=1

k 2 m n
errory, = g ' — [T+ g U = Z T+ ZZ;UJ -
j=1 1=1 J

k
Si = i
X' =X+ E zju;
J=1

Z; — (xz—i)-uj
OGiven k<n, find (uy,...,u,)

minimizing reconstruction error:

m
errory = Z (x! — %4)2
1=1

1

2
k
T+ Z z;uj] )
j=1

2 e
m no ... uy;is 1if i==j, and zero nooz ‘5
=) S: 25U otherwise, because us are = E E (Z])
i=1 \j=k+1 an orntho-normal basis ... i=1 j=k+1

Error is sum of squared weights that would
have be used for dimensions that are cut!!!!

errory = Z Z [uj ' (Xi - i)]Q

i=1 j=k+1




Reconstruction error and covariance

matrix
— © e ¢ —_— >4
errory, = ; '_Z [u; - (x* = X)] Now, to find the u,, we minimize:
i=1 j=k+1 J

= Sn: Sn“ uJT(:UZ —7)(z — f)Tuj UTZUJ -+ >\(1 — UTU)
z':fj:kjrl \

n - m o Lagrange multiplier
_ Z ul Z(m — ) (2" —7)" | u; to ensure
j=k+1 i=1 orthonormal
n Take derivative, set equal to O,
errory = m Z u;‘-FEuj ..., Solutions are eigenvectors
j=k+1

Zui — )\Zuz

%i (x — %) (i — )T




Minimizing reconstruction error and
eigen vectors

Minimizing reconstruction error equivalent to
picking orthonormal basis (u,,...,u,) minimizing:

n
errory = m E u]TZuj
j=k+1

Solutions: eigen vectors
Zu@' — )\Zuz

So, minimizing reconstruction error equivalent to
picking (u,,4,...,u.) to be eigen vectors with smallest
eigen values

And, our projection should be onto the (u,,...,u,) with
the largest values



Basic PCA algorithm

Start from m by n data matrix X
Recenter: subtract mean from each row of X

— X, < X=X

Compute covariance matrix:

— S« 1/mXTX_

Find eigen vectors and values of >

Principal components: k eigen vectors with
highest eigen values



Data:

-

o

PCA example

k
X'=X+ ) zu,
j=1

Projection: Reconstruction:
o
- o
| mean .
° \ o First @
{ eigenvector i
> © I o & N ™~
= &
Second E

eigenvector

K]



Elge nfaces [Turk, Pentland "91]

* Input images:

Principal components:




Eigenfaces reconstruction

* Each image corresponds to adding together
the principal components:




Scaling up

* Covariance matrix can be really big!
— 2isnbyn
— 10000 features can be common!

— finding eigenvectors is very slow...

e Use singular value decomposition (SVD)
— finds to k eigenvectors

— great implementations available, e.g., Matlab svd



SVD

* Write X=WSV'
— X <= data matrix, one row per datapoint

—W < weight matrix, one row per datapoint —
coordinate of x' in eigenspace

—S < singular value matrix, diagonal matrix

* in our setting each entry is eigenvalue A,

— V' < singular vector matrix

* in our setting each row is eigenvector v,



PCA using SVD algorithm

Start from m by n data matrix X

Recenter: subtract mean from each row of X
— X, < X=X

Call SVD algorithm on X_— ask for k singular
vectors

Principal components: k singular vectors with
highest singular values (rows of V')

— Coefficients: project each point onto the new vectors



What you need to know

Dimensionality reduction
— why and when it’s important

Simple feature selection
Regularization as a type of feature selection

Principal component analysis
— minimizing reconstruction error

— relationship to covariance matrix and
eigenvectors

— using SVD



