CSE446: Dimensionality Reduction and PCA Winter 2015

Luke Zettlemoyer

Slides adapted from Carlos Guestrin

Dimensionality reduction

- Input data may have thousands or millions of dimensions!
 - e.g., text data has ???, images have ???
- Dimensionality reduction: represent data with fewer dimensions
 - easier learning fewer parameters
 - visualization hard to visualize more than 3D or 4D
 - discover "intrinsic dimensionality" of data
 - high dimensional data that is truly lower dimensional

Feature selection

- Want to learn f:X→Y
 - $-X = <X_1,...,X_n >$
 - but some features are more important than others

- Approach: select subset of features to be used by learning algorithm
 - Score each feature (or sets of features)
 - Select set of features with best score

Greedy forward feature selection algorithm

- Pick a dictionary of features
 - e.g., polynomials for linear regression
- Greedy: Start from empty (or simple) set of features $F_0 = \emptyset$
 - Run learning algorithm for current set of features F_t
 - Obtain $h_{\rm t}$
 - Select next best feature X_i
 - e.g., X_j that results in lowest held out error when learning with $F_t \cup \{X_i\}$
 - $-F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - Repeat

Greedy backward feature selection algorithm

- Pick a dictionary of features
 - e.g., polynomials for linear regression
- Greedy: Start with all features $F_0 = F$
 - Run learning algorithm for current set of features F_t
 - Obtain h_t
 - Select next worst feature X_i
 - e.g., X_j that results in lowest held out error learner when learning with F_t $\{X_i\}$
 - $-F_{t+1} \leftarrow F_t \{X_i\}$
 - Repeat

Impact of feature selection on classification of fMRI data [Pereira et al. '05]

category of word read by subject									
#voxels	mean	subjects							
		233B	329B	332B	424B	474B	496B	77B	86B
50	0.735	0.783	0.817	0.55	0.783	0.75	0.8	0.65	0.75
100	0.742	0.767	0.8	0.533	0.817	0.85	0.783	0.6	0.783
200	0.737	0.783	0.783	0.517	0.817	0.883	0.75	0.583	0.783
300	0.75	0.8	0.817	0.567	0.833	0.883	0.75	0.583	0.767
400	0.742	0.8	0.783	0.583	0.85	0.833	0.75	0.583	0.75
800	0.735	0.833	0.817	0.567	0.833	0.833	0.7	0.55	0.75
1600	0.698	0.8	0.817	0.45	0.783	0.833	0.633	0.5	0.75
all (~ 2500)	0.638	0.767	0.767	0.25	0.75	0.833	0.567	0.433	0.733

Table 1: Average accuracy across all pairs of categories, restricting the procedure to use a certain number of voxels for each subject. The highlighted line corresponds to the best mean accuracy, obtained using 300 voxels.

Feature Selection through Regularization

 Previously, we discussed regularization with a squared norm:

$$\hat{\theta} = \arg\min_{\theta} Loss(\theta; \mathcal{D}) + \lambda \sum_{i} \theta_{i}^{2}$$

What if we used an L₁ norm instead?

$$\hat{\theta} = \arg\min_{\theta} Loss(\theta; \mathcal{D}) + \lambda \sum_{i} |\theta_{i}|$$

1.5

- What about L_∞?
- These norms work, but are harder to optimize! And, it can be tricky to set λ!!!

Lower dimensional projections

• Rather than picking a subset of the features, we can new ones by combining existing features $x_1 ext{ ... } x_n$

$$z_1 = w_0^{(1)} + \sum_i w_i^{(1)} x_i$$

• • •

$$z_k = w_0^{(k)} + \sum_i w_i^{(k)} x_i$$

- New features are linear combinations of old ones
- Reduces dimension when k<n
- Let's see this in the unsupervised setting
 - just X, but no Y

Linear projection and reconstruction

Principal component analysis – basic idea

- Project n-dimensional data into k-dimensional space while preserving information:
 - e.g., project space of 10000 words into 3dimensions
 - e.g., project 3-d into 2-d

Choose projection with minimum reconstruction error

Linear projections, a review

$$\widehat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z^i_j \mathbf{u}_j$$

- Project a point into a (lower dimensional) space:
 - **point**: $\mathbf{x} = (x_1, ..., x_n)$
 - select a basis set of unit (length 1) basis vectors
 (u₁,...,u_k)
 - we consider orthonormal basis:
 - $-\mathbf{u}_{i} \cdot \mathbf{u}_{i} = 1$, and $\mathbf{u}_{i} \cdot \mathbf{u}_{i} = 0$ for $i \neq j$
 - select a center \bar{x} , defines offset of space
 - **best coordinates** in lower dimensional space defined by dot-products: $(z_1,...,z_k)$, $z_i = (\mathbf{x} \overline{\mathbf{x}}) \cdot \mathbf{u}_i$

Reminder: Vector Projections

Basic definitions:

- $-A.B = |A||B|\cos\theta$
- $-\cos\theta = |adj|/|hyp|$

- Assume |B|=1 (unit vector)
 - $-A.B = |A|\cos\theta$
 - So, dot product is length of projection!!!

PCA finds projection that minimizes reconstruction error

- Given m data points: $\mathbf{x}^{i} = (x_{1}^{i},...,x_{n}^{i})$, i=1...m
- Will represent each point as a projection:

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j \quad \bar{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^m \mathbf{x}^i$$

$$\bar{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}^{i}$$

PCA:

$$z_j^i = (\mathbf{x}^i - \mathbf{\bar{x}}) \cdot \mathbf{u}_j$$

- Given k<n, find $(\mathbf{u}_1,...,\mathbf{u}_k)$ minimizing reconstruction error:

$$error_k = \sum_{i=1}^m (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

Understanding the reconstruction error

 Note that xⁱ can be represented exactly by n-dimensional projection:

$$\mathbf{x}^i = \bar{\mathbf{x}} + \sum_{j=1}^n z_j^i \mathbf{u}_j$$

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$

$$z_j^i = (\mathbf{x}^i - \bar{\mathbf{x}}) \cdot \mathbf{u}_j$$

□Given k<n, find $(\mathbf{u}_1,...,\mathbf{u}_k)$ minimizing reconstruction error:

$$error_k = \sum_{i=1}^m (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

Rewriting error:

$$error_{k} = \sum_{i=1}^{m} \left(x^{i} - \left[\bar{x} + \sum_{j=1}^{k} z_{j}^{i} u_{j} \right] \right)^{2} = \sum_{i=1}^{m} \left(\left[\bar{x} + \sum_{j=1}^{n} z_{j}^{i} u_{j} \right] - \left[\bar{x} + \sum_{j=1}^{k} z_{j}^{i} u_{j} \right] \right)^{2}$$

$$=\sum_{i=1}^m \left(\sum_{j=k+1}^n z_j^i u_j\right)^2 \quad \dots \quad u_i u_j \text{ is 1 if i==j, and zero otherwise, because us are an orntho-normal basis } \dots \quad =\sum_{i=1}^m \sum_{j=k+1}^n (z_j^i)^2$$

Error is sum of squared weights that would have be used for dimensions that are cut!!!!

$$error_k = \sum_{i=1}^{m} \sum_{j=k+1}^{n} [\mathbf{u}_j \cdot (\mathbf{x}^i - \bar{\mathbf{x}})]^2$$

Reconstruction error and covariance matrix

$$error_k = \sum_{i=1}^m \sum_{j=k+1}^n [\mathbf{u}_j \cdot (\mathbf{x}^i - \bar{\mathbf{x}})]^2$$

$$= \sum_{i=1}^{m} \sum_{j=k+1}^{n} u_j^T (x^i - \bar{x}) (x^i - \bar{x})^T u_j$$

$$= \sum_{i=k+1}^{n} u_{j}^{T} \left[\sum_{i=1}^{m} (x^{i} - \bar{x})(x^{i} - \bar{x})^{T} \right] u_{j}$$

$$error_k = m \sum_{j=k+1}^{n} u_j^T \Sigma u_j$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}^{i} - \bar{\mathbf{x}}) (\mathbf{x}^{i} - \bar{\mathbf{x}})^{T}$$

Now, to find the u_i, we minimize:

$$u^T \Sigma u + \lambda (1 - u^T u)$$

Lagrange multiplier to ensure orthonormal

Take derivative, set equal to 0, ..., solutions are eigenvectors

$$\sum u_i = \lambda_i u_i$$

Minimizing reconstruction error and eigen vectors

• Minimizing reconstruction error equivalent to picking orthonormal basis $(\mathbf{u}_1,...,\mathbf{u}_n)$ minimizing:

$$error_k = m \sum_{j=k+1}^{n} u_j^T \Sigma u_j$$

Solutions: eigen vectors

$$\sum u_i = \lambda_i u_i$$

- So, minimizing reconstruction error equivalent to picking $(\mathbf{u}_{k+1},...,\mathbf{u}_n)$ to be eigen vectors with smallest eigen values
- And, our projection should be onto the $(\mathbf{u}_1,...,\mathbf{u}_k)$ with the largest values

Basic PCA algorithm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X

$$-X_c \leftarrow X - \overline{X}$$

Compute covariance matrix:

$$-\Sigma \leftarrow 1/m X_c^T X_c$$

- Find eigen vectors and values of Σ
- Principal components: k eigen vectors with highest eigen values

PCA example

$$\hat{\mathbf{x}}^i = \bar{\mathbf{x}} + \sum_{j=1}^k z_j^i \mathbf{u}_j$$

0

0

0

0

O

0

Projection:

Reconstruction:

Eigenfaces [Turk, Pentland '91]

Input images:

Principal components:

Eigenfaces reconstruction

 Each image corresponds to adding together the principal components:

Scaling up

- Covariance matrix can be really big!
 - $-\Sigma$ is n by n
 - 10000 features can be common!
 - finding eigenvectors is very slow...

- Use singular value decomposition (SVD)
 - finds to k eigenvectors
 - great implementations available, e.g., Matlab svd

SVD

- Write X = W S V^T
 - $-X \leftarrow$ data matrix, one row per datapoint
 - W ← weight matrix, one row per datapoint coordinate of xⁱ in eigenspace
 - -S ← singular value matrix, diagonal matrix
 - in our setting each entry is eigenvalue λ_i
 - $-\mathbf{V}^{\mathsf{T}} \leftarrow \text{singular vector matrix}$
 - in our setting each row is eigenvector v_i

PCA using SVD algorithm

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X
 X_c ← X X
- Call SVD algorithm on X_c ask for k singular vectors
- Principal components: k singular vectors with highest singular values (rows of V^T)
 - Coefficients: project each point onto the new vectors

What you need to know

- Dimensionality reduction
 - why and when it's important
- Simple feature selection
- Regularization as a type of feature selection
- Principal component analysis
 - minimizing reconstruction error
 - relationship to covariance matrix and eigenvectors
 - using SVD