A learning problem: predict fuel efficiency

From the UCI repository (thanks to Ross Quinlan)

- 40 Records
- Discrete data (for now)
- Predict MPG
- Need to find: \(f : X \rightarrow Y \)

<table>
<thead>
<tr>
<th>mpg</th>
<th>cylinders</th>
<th>displacement</th>
<th>horsepower</th>
<th>weight</th>
<th>acceleration</th>
<th>modelyear</th>
<th>maker</th>
</tr>
</thead>
<tbody>
<tr>
<td>good</td>
<td>4</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>high</td>
<td>75to78</td>
<td>asia</td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td>70to74</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>medium</td>
<td>medium</td>
<td>low</td>
<td>low</td>
<td>75to74</td>
<td>europe</td>
</tr>
<tr>
<td>bad</td>
<td>8</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>low</td>
<td>70to74</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td>70to74</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>low</td>
<td>medium</td>
<td>low</td>
<td>medium</td>
<td>70to74</td>
<td>asia</td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>low</td>
<td>medium</td>
<td>low</td>
<td>low</td>
<td>70to74</td>
<td>asia</td>
</tr>
<tr>
<td>bad</td>
<td>8</td>
<td>high</td>
<td>high</td>
<td>low</td>
<td>75to78</td>
<td>america</td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>8</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>low</td>
<td>70to74</td>
<td>america</td>
</tr>
<tr>
<td>good</td>
<td>8</td>
<td>high</td>
<td>medium</td>
<td>high</td>
<td>high</td>
<td>79to83</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>8</td>
<td>high</td>
<td>high</td>
<td>low</td>
<td>75to78</td>
<td>america</td>
<td></td>
</tr>
<tr>
<td>good</td>
<td>4</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>79to83</td>
<td>america</td>
</tr>
<tr>
<td>good</td>
<td>4</td>
<td>low</td>
<td>low</td>
<td>medium</td>
<td>high</td>
<td>79to83</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>medium</td>
<td>medium</td>
<td>high</td>
<td>75to78</td>
<td>america</td>
<td></td>
</tr>
<tr>
<td>good</td>
<td>4</td>
<td>medium</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>79to83</td>
<td>america</td>
</tr>
<tr>
<td>good</td>
<td>4</td>
<td>low</td>
<td>low</td>
<td>medium</td>
<td>high</td>
<td>79to83</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>8</td>
<td>high</td>
<td>high</td>
<td>low</td>
<td>70to74</td>
<td>america</td>
<td></td>
</tr>
<tr>
<td>good</td>
<td>4</td>
<td>low</td>
<td>medium</td>
<td>low</td>
<td>medium</td>
<td>75to78</td>
<td>europe</td>
</tr>
<tr>
<td>bad</td>
<td>5</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td>75to78</td>
<td>europe</td>
<td></td>
</tr>
</tbody>
</table>

From the UCI repository (thanks to Ross Quinlan)
How to Represent our Function?

\[f(\begin{array}{ccccccc}
\text{cylinders} & \text{displacement} & \text{horsepower} & \text{weight} & \text{acceleration} & \text{modelyear} & \text{maker} \\
4 & \text{low} & \text{low} & \text{low} & \text{high} & 75\text{to78} & \text{asia}
\end{array}) \rightarrow \begin{array}{c}
\text{mpg} \\
good
\end{array} \]

Conjunctions in Propositional Logic?

\[\text{maker}=\text{asia} \land \text{weight}=\text{low} \]

Need to find “Hypothesis”:

\[f : X \rightarrow Y \]
Restricted Hypothesis Space

• Many possible representations
• Natural choice: conjunction of attribute constraints
• For each attribute:
 – Constrain to a specific value: eg maker=asia
 – Don’t care: ?
• For example

 \[
 \text{maker} \text{ cyl} \text{ displace} \text{ weight} \text{ accel} \ldots \n \]

 asia \ ? \ ? \ low \ ?

 Represents \(\text{maker=asia} \land \text{weight=low} \)
Consistency

• Say an “example is consistent with a hypothesis” when the example logically satisfies the hypothesis

• Hypothesis: \(\text{maker} = \text{asia} \land \text{weight} = \text{low} \)

• Examples:

<table>
<thead>
<tr>
<th></th>
<th>asia</th>
<th>5</th>
<th>low</th>
<th>low</th>
<th>low</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>usa</td>
<td>4</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>...</td>
</tr>
</tbody>
</table>
Ordering on Hypothesis Space

<table>
<thead>
<tr>
<th>x_1</th>
<th>Asia</th>
<th>5</th>
<th>Low</th>
<th>Low</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_2</td>
<td>USA</td>
<td>4</td>
<td>Med</td>
<td>Med</td>
<td>Med</td>
</tr>
</tbody>
</table>

h1: maker=asia \land accel=low
h2: maker=asia
h3: maker=asia \land weight=low
Hypotheses: decision trees $f : X \to Y$

- Each internal node tests an attribute x_i
- Each branch assigns an attribute value $x_i = v$
- Each leaf assigns a class y
- To classify input x: traverse the tree from root to leaf, output the labeled y
Hypothesis space

- How many possible hypotheses?
- What functions can be represented?
What functions can be represented?

- Decision trees can represent any boolean function!
- But, could require exponentially many nodes…

\[\text{cyl}=3 \lor (\text{cyl}=4 \land (\text{maker} = \text{asia} \lor \text{maker} = \text{europe})) \lor \ldots \]
Hypothesis space

- How many possible hypotheses?
- What functions can be represented?
- How many will be consistent with a given dataset?
- How will we choose the best one?
 - Lets first look at how to split nodes, then consider how to find the best tree
What is the Simplest Tree?

Is this a good tree?

predict mpg=bad

[22+, 18-] Means: correct on 22 examples incorrect on 18 examples
A Decision Stump

mpg values: bad good

root
22 18
pchance = 0.001

cylinders = 3
0 0 Predict bad

cylinders = 4
4 17 Predict good

cylinders = 5
1 0 Predict bad

cylinders = 6
8 0 Predict bad

cylinders = 8
9 1 Predict bad
Recursive Step

Take the Original Dataset...

And partition it according to the value of the attribute we split on

Records in which cylinders = 4
Records in which cylinders = 5
Records in which cylinders = 6
Records in which cylinders = 8

mpg values: bad good

root
22 18
pchange = 0.001

cylinders = 3
Predict bad
0 0

cylinders = 4
Predict good
4 17

cylinders = 5
Predict bad
1 0

cylinders = 6
Predict bad
8 0

cylinders = 8
Predict bad
9 1

Records in which cylinders = 4
Records in which cylinders = 5
Records in which cylinders = 6
Records in which cylinders = 8
Recursive Step

Build tree from These records..

Records in which cylinders = 4

Records in which cylinders = 5

Records in which cylinders = 6

Records in which cylinders = 8

mpg values: bad good

root

22 18

pchance = 0.001
Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia.

(Similar recursion in the other cases)
Are all decision trees equal?

- Many trees can represent the same concept
- But, not all trees will have the same size!
 - e.g., $\phi = (A \land B) \lor (\neg A \land C)$ -- ((A and B) or (not A and C))

Which tree do we prefer?
 - Smaller tree has more examples at each leaf!
Learning decision trees is hard!!!

• Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest ’76]

• Resort to a greedy heuristic:
 – Start from empty decision tree
 – Split on next best attribute (feature)
 – Recurse
Splitting: choosing a good attribute

Would we prefer to split on X_1 or X_2?

Idea: use counts at leaves to define probability distributions, so we can measure uncertainty!
Measuring uncertainty

• Good split if we are more certain about classification after split
 – Deterministic good (all true or all false)
 – Uniform distribution bad
 – What about distributions in between?

<table>
<thead>
<tr>
<th></th>
<th>P(Y=A)</th>
<th>P(Y=B)</th>
<th>P(Y=C)</th>
<th>P(Y=D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>1/2</td>
<td>1/4</td>
<td>1/8</td>
<td>1/8</td>
</tr>
<tr>
<td>Case 2</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
</tbody>
</table>
Entropy $H(Y)$ of a random variable Y

$$H(Y) = - \sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

More uncertainty, more entropy!
Information Theory interpretation:
$H(Y)$ is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)
Entropy Example

\[H(Y) = - \sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i) \]

\[P(Y=t) = \frac{5}{6} \]
\[P(Y=f) = \frac{1}{6} \]

\[H(Y) = - \frac{5}{6} \log_2 \frac{5}{6} - \frac{1}{6} \log_2 \frac{1}{6} \]
\[= 0.65 \]
Conditional Entropy

Conditional Entropy $H(Y|X)$ of a random variable Y conditioned on a random variable X

$$H(Y | X) = - \sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i | X = x_j) \log_2 P(Y = y_i | X = x_j)$$

Example:

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

$P(X_1=t) = \frac{4}{6}$
$P(X_1=f) = \frac{2}{6}$

$H(Y|X_1) = - \frac{4}{6} (1 \log_2 1 + 0 \log_2 0)$
$\quad - \frac{2}{6} (1/2 \log_2 1/2 + 1/2 \log_2 1/2)$
$= 2/6$
Information gain

- Decrease in entropy (uncertainty) after splitting

\[IG(X) = H(Y) - H(Y \mid X) \]

In our running example:

\[IG(X_1) = H(Y) - H(Y \mid X_1) = 0.65 - 0.33 \]

\[IG(X_1) > 0 \rightarrow \text{we prefer the split!} \]
Learning decision trees

• Start from empty decision tree

• Split on **next best attribute (feature)**
 – Use, for example, information gain to select attribute:
 \[
 \arg \max_i IG(X_i) = \arg \max_i H(Y) - H(Y | X_i)
 \]

• Recurse
Suppose we want to predict MPG

Look at all the information gains...
First split looks good! But, when do we stop?
Don’t split a node if all matching records have the same output value.
Don’t split a node if none of the attributes can create multiple non-empty children.
Base Case Two: No attributes can distinguish
Base Cases: An idea

- **Base Case One**: If all records in current data subset have the same output then *don’t recurse*
- **Base Case Two**: If all records have exactly the same set of input attributes then *don’t recurse*

Proposed Base Case 3:
If all attributes have zero information gain then *don’t recurse*

• *Is this a good idea?*
The problem with Base Case 3

\[y = a \text{ XOR } b \]

The information gains:

The resulting decision tree:
If we omit Base Case 3:

\[
y = a \text{ XOR } b
\]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Is it OK to omit Base Case 3?
Summary: Building Decision Trees

BuildTree($DataSet, Output$)

• If all output values are the same in $DataSet$, return a leaf node that says “predict this unique output”
• If all input values are the same, return a leaf node that says “predict the majority output”
• Else find attribute X with highest Info Gain
• Suppose X has n_X distinct values (i.e. X has arity n_X).
 – Create a non-leaf node with n_X children.
 – The i’th child should be built by calling $\text{BuildTree}(DS_i, Output)$
 Where DS_i contains the records in $DataSet$ where $X = i$th value of X.
The test set error is much worse than the training set error…

...why?
Decision trees will overfit!!!

• Standard decision trees have no learning bias
 – Training set error is always zero!
 • (If there is no label noise)
 – Lots of variance
 – Must introduce some bias towards simpler trees

• Many strategies for picking simpler trees
 – Fixed depth
 – Fixed number of leaves
 – Or something smarter...
Decision trees will overfit!!!
One Definition of Overfitting

• Assume:
 – Data generated from distribution $D(X,Y)$
 – A hypothesis space H

• Define errors for hypothesis $h \in H$
 – Training error: $\text{error}_{\text{train}}(h)$
 – Data (true) error: $\text{error}_D(h)$

• We say h overfits the training data if there exists an $h' \in H$ such that:

\[
\text{error}_{\text{train}}(h) < \text{error}_{\text{train}}(h')
\]

and

\[
\text{error}_D(h) > \text{error}_D(h')
\]
Occam’s Razor

• Why Favor Short Hypotheses?

• Arguments for:
 – Fewer short hypotheses than long ones
 → A short hyp. less likely to fit data by coincidence
 → Longer hyp. that fit data may might be coincidence

• Arguments against:
 – Argument above really uses the fact that hypothesis space is small!!!
 – What is so special about small sets based on the size of each hypothesis?
Consider this split
How to Build Small Trees

Two reasonable approaches:

• Optimize on the held-out (development) set
 – If growing the tree larger hurts performance, then stop growing!!
 – Requires a larger amount of data...

• Use statistical significance testing
 – Test if the improvement for any split it likely due to noise
 – If so, don’t do the split!
A Chi Square Test

Suppose that mpg was completely uncorrelated with maker.

What is the chance we’d have seen data of at least this apparent level of association anyway?

By using a particular kind of chi-square test, the answer is 13.5%

We will not cover Chi Square tests in class. See page 93 of the original ID3 paper [Quinlan, 86], linked from the course web site.
Using Chi-squared to avoid overfitting

• Build the full decision tree as before
• But when you can grow it no more, start to prune:
 – Beginning at the bottom of the tree, delete splits in which \(p_{\text{chance}} > \text{MaxPchance} \)
 – Continue working you way up until there are no more prunable nodes

\text{MaxPchance} is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise
Pruning example

- With MaxPchance = 0.05, you will see the following MPG decision tree:

When compared to the unpruned tree:
- improved test set accuracy
- worse training accuracy
MaxPchance

- Technical note: MaxPchance is a regularization parameter that helps us bias towards simpler models.

We’ll learn to choose the value of magic parameters like this one later!
Real-Valued inputs

What should we do if some of the inputs are real-valued?

<table>
<thead>
<tr>
<th>mpg</th>
<th>cylinders</th>
<th>displacement</th>
<th>horsepower</th>
<th>weight</th>
<th>acceleration</th>
<th>modelyear</th>
<th>maker</th>
</tr>
</thead>
<tbody>
<tr>
<td>good</td>
<td>4</td>
<td>97</td>
<td>75</td>
<td>2265</td>
<td>18.2</td>
<td>77</td>
<td>asia</td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>199</td>
<td>90</td>
<td>2648</td>
<td>15</td>
<td>70</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>121</td>
<td>110</td>
<td>2600</td>
<td>12.8</td>
<td>77</td>
<td>europe</td>
</tr>
<tr>
<td>bad</td>
<td>8</td>
<td>350</td>
<td>175</td>
<td>4100</td>
<td>13</td>
<td>73</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>198</td>
<td>95</td>
<td>3102</td>
<td>16.5</td>
<td>74</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>108</td>
<td>94</td>
<td>2379</td>
<td>16.5</td>
<td>73</td>
<td>asia</td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>113</td>
<td>95</td>
<td>2228</td>
<td>14</td>
<td>71</td>
<td>asia</td>
</tr>
<tr>
<td>bad</td>
<td>8</td>
<td>302</td>
<td>139</td>
<td>3570</td>
<td>12.8</td>
<td>78</td>
<td>america</td>
</tr>
<tr>
<td>good</td>
<td>4</td>
<td>120</td>
<td>79</td>
<td>2625</td>
<td>18.6</td>
<td>82</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>8</td>
<td>455</td>
<td>225</td>
<td>4425</td>
<td>10</td>
<td>70</td>
<td>america</td>
</tr>
<tr>
<td>good</td>
<td>4</td>
<td>107</td>
<td>86</td>
<td>2464</td>
<td>15.5</td>
<td>76</td>
<td>europe</td>
</tr>
<tr>
<td>bad</td>
<td>5</td>
<td>131</td>
<td>103</td>
<td>2830</td>
<td>15.9</td>
<td>78</td>
<td>europe</td>
</tr>
</tbody>
</table>

Infinite number of possible split values!!!

Finite dataset, only finite number of relevant splits!
“One branch for each numeric value” idea:

Hopeless: with such high branching factor will shatter the dataset and overfit
Threshold splits

• **Binary tree:** split on attribute X at value t
 – One branch: $X < t$
 – Other branch: $X \geq t$

• **Requires small change**
 • Allow repeated splits on same variable
 • How does this compare to “branch on each value” approach?
The set of possible thresholds

• Binary tree, split on attribute X
 – One branch: $X < t$
 – Other branch: $X \geq t$

• Search through possible values of t
 – Seems hard!!!

• But only finite number of t’s are important
 – Sort data according to X into $\{x_1, \ldots, x_m\}$
 – Consider split points of the form $x_i + (x_{i+1} - x_i)/2$
Picking the best threshold

• Suppose X is real valued with threshold t
 • Want $IG(Y|X:t)$: the information gain for Y when testing if X is greater than or less than t
 • Define:
 • $H(Y|X:t) = H(Y|X < t) P(X < t) + H(Y|X >= t) P(X >= t)$
 • $IG(Y|X:t) = H(Y) - H(Y|X:t)$
 • $IG^*(Y|X) = \max_t IG(Y|X:t)$
 • Use: $IG^*(Y|X)$ for continuous variables
Example with MPG

<table>
<thead>
<tr>
<th>Input</th>
<th>Value</th>
<th>Distribution</th>
<th>Info Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>cylinders</td>
<td>< 5</td>
<td>blue</td>
<td>0.48268</td>
</tr>
<tr>
<td></td>
<td>>= 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>displacement</td>
<td>< 198</td>
<td>blue</td>
<td>0.428205</td>
</tr>
<tr>
<td></td>
<td>>= 198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>horsepower</td>
<td>< 94</td>
<td>blue</td>
<td>0.48268</td>
</tr>
<tr>
<td></td>
<td>>= 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>weight</td>
<td>< 2789</td>
<td>blue</td>
<td>0.379471</td>
</tr>
<tr>
<td></td>
<td>>= 2789</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acceleration</td>
<td>< 18.2</td>
<td>blue</td>
<td>0.159982</td>
</tr>
<tr>
<td></td>
<td>>= 18.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>modelyear</td>
<td>< 81</td>
<td>blue</td>
<td>0.319193</td>
</tr>
<tr>
<td></td>
<td>>= 81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>maker</td>
<td>america</td>
<td>blue</td>
<td>0.0437265</td>
</tr>
<tr>
<td></td>
<td>asia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>europe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example tree for our continuous dataset
What you need to know about decision trees

• Decision trees are one of the most popular ML tools
 – Easy to understand, implement, and use
 – Computationally cheap (to solve heuristically)
• Information gain to select attributes (ID3, C4.5,...)
• Presented for classification, can be used for regression and density estimation too
• Decision trees will overfit!!!
 – Must use tricks to find “simple trees”, e.g.,
 • Fixed depth/Early stopping
 • Pruning
 • Hypothesis testing
Acknowledgements

- Some of the material in the decision trees presentation is courtesy of Andrew Moore, from his excellent collection of ML tutorials:
 - http://www.cs.cmu.edu/~awm/tutorials