CSE 446 Machine Learning, Winter 2015
Homework 2

Due: Fri, Feb 13, 9:30am

1 Naive Bayes with discrete features [25 Points]

Consider the following data set on lung diseases. Your goal is to build a Naive Bayes classifier
that predicts whether a person have Bronchitis or Tuberculosis, given his/her symptoms.

Disease \ X-ray Shadow \ Dyspnea | Lung inflammation ‘
Bronchitis Yes Yes Yes
Bronchitis Yes Yes Yes
Bronchitis No No Yes

Tuberculosis No No Yes
Tuberculosis Yes Yes No
Tuberculosis Yes No No

1. (10 Points) List the distributions that would be learned if you use MLE to estimate a
Naive Bayes model from this data (e.g. P(Dyspenea|Bronchitis)). Include all of the
estimated probabilities for each distribution. Show your work.

2. (10 Points) Based on your learned Naive Bayes model, diagnose a patient with the
following symptoms. Show your work.

X-ray Shadow | Dyspnea | Lung inflammation
Yes No Yes

3. (5 Points) Describe briefly wether you think your learned model is overfit. List one
key sign of overfitting in Naive Bayes models, as described in class. Does your model
have this problem? Why or why not?

2 Logistic Regression Programming Question [40 Points|

In this problem, you will train a logistic regression model to predict the Click Through
Rate (CTR) on a dataset with about 10,000 examples. The CTR provides a measure of the
popularity of an advertisement, and the features we will use for prediction include attributes
of the ad and the user.

2.1

Unprocessed Dataset

The dataset we will consider comes from the 2012 KDD Cup Track 2. Here, a user types a
query and a set of ads are displayed and we observe which ad was clicked.
For example:

1.
2.

3.

Alice went to the famous search engine Elgoog, and typed the query “big data”.

Besides the search result, Elgoog displayed 3 ads each with some short text including
its title, description, etc.

Alice then clicked on the first advertisement

This completes a SESSION. At the end of this session Elgoog logged 3 records:

Clicked = 1 | Depth = 3 | Position = 1 | Alice | Text of Ad1 |
Clicked = 0 | Depth = 3 | Position = 2 | Alice | Text of Ad2 |
Clicked = 0 | Depth = 3 | Position = 3 | Alice | Text of Ad3 |

In addition, the log contains information about Alice’s age and gender. Here is the for-
mat of a complete row of our training data:

Clicked | Depth | Position | Userid | Gender | Age | Text Tokens of Ad

Let’s go through each field in detail:

“Clicked” is either 0 or 1, indicating whether the ad is clicked.

“Depth” takes a value in {1,2,...,} specifying the number of ads displayed in the
session.

“Position” takes a value in {1,2, ..., Depth} specifying the rank of the ad among all
the ads displayed in the session.

“Userid” is an integer id of the user.

“Age” takes a value in {1,2,3,4,5,6}, indicating different ranges of a user’s age: 1’
for (0, 12], ‘2’ for (12, 18], ‘3’ for (18, 24], ‘4’ for (24, 30], ‘5’ for (30, 40], and ‘6’ for
greater than 40.

“Gender” takes a value in {—1,1}, where -1 stands for male and 1 stands for female.

“Text Tokens” is a comma separated list of token ids. For example: “15,251,599”
means “token_15”, “token_251", and “token-599”. (Note that due to privacy issues, the
mapping from token ids to words is not revealed to us in this dataset, e.g., “token_32”
to “big”.)

Here is an example that illustrates the concept of features “Depth” and “Position”.
Suppose the list below was returned by Elgoog as a response to Alice’s query. The list has
depth = 3. “Big Data” has position = 1, “Machine Learning” has position = 2 and so

forth.

Big Data
Machine Learning
Cloud Computing

Here is a sample from the training data:

0]2]2]280151|1]2]0,1,154,173,183,188, 214,234, 26, 3, 32, 36, 37,4503, 51, 679, 7740, 8, 94

The test data is in the same format except that each instance does not have the first
label field, which is stored in a separate file named “test_label.txt”. Some data points do
not have user information. In these cases, the userid, age, and gender are set to zero.

2.2 Processed Dataset (that you will use...)

In class, we simply denote

x=[x1,...,24] (1)

as an abstract feature vector. In the real world, however, constructing the feature vector
requires some thought. We have preprocessed the dataset for you, making the following
modifications.

e First of all, not everything in the data should be treated as a feature. In this dataset,
“Userid” should not be treated as a feature. We have removed this column from the
dataset for you.

e Similarly, we cannot directly use the list of token ids as features in Equation [1] since
the numbers are arbitrarily assigned and thus meaningless for the purposes of regres-
sion. Instead, we should think of the list of token ids L = [l1,ls,!3,...] as a compact
representation of a sparse binary vector b where b[i] = 1, Vi € L. We have replaced
the list of words with a list of binary variables indicating token presence.

e As for the rest of the features: “Depth”, “Position”, “Age”, and ‘Gender”, they are
scalar variables, so we maintain their original values in the dataset.

The dataset that we are giving you has the following form:
Clicked, Depth, Position, Gender, Age, Word1, Word2, Word3, Word4, ..., Word50

So a sample training datapoint would be:

01,2 1,12,1,1,0,0,0,1,1,0,1,1,0,0,1,0,0,0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,
o, o0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0, 0

Again, the test data is in the same format except that each instance does not have the
first label field, which is stored in a separate file named “test_label.txt”.

2.3 Accessing and Processing the Data

1. Download the processed version of the dataset “clickprediction_data.tar.gz” from the
course website.

2. After extracting, there should be five files: train.txt, test.txt test_label.txt, start.py
(which contains code to load the data) and oversampled_train.txt (more on this file
later. For now, just ignore it).

2.4 Batch Gradient Descent (30 points)

Recall that logistic regression can be optimized by gradient descent (or ascent). We call
it batch gradient descent because we’re using the whole training data in order to update
the weights in every iteration, in contrast to stochastic gradient descent. In class you
discussed maximizing the regularized conditional log-probability. Here we’ll be minimizing
the regularized log-loss (the updates will be the same):

1 1 .
I(x, wo, W) = 5A||w|\§ - ¥ In] Py’ x7, wo, w)
J

1. (8 pts) Write down the equation for the batch weight update step. That is, how to
update weights w'*! using (X,y,w’,\). Assume we're using [? regularization and
step size 7.

2. (9 pts) Implement gradient descent and run it for 1000 iterations, initializing w with
a vector of all zeros. Remember not to regularize wy!

(a) Plot the log-loss function after each iteration, using n = 0.1 and A = 0.3. Re-
member to include the regularization term.

(b) Using the weights learned above, predict the CTRs for the test data and report
the accuracy of prediction.

3. (9 pts) Now implement the following stop criteria: stop when |l[(w?) — [(w!™1)| < e,
where [is the log-loss function. Run gradient descent with n = 0.1, A = 0.3 and
e = 0.0005.

(a) For how many iterations did gradient descent run?

(b) Plot the log-loss function after each iteration (now the x-axis should not go until
1000 as it did in the previous question).

(c) Use the weights you learned to predict the CTRs for the test data, and report
the accuracy that is achieved.

4. (9 pts) Finally, we will experiment with the effect of A on the magnitudes of weights.
Run batch gradient descent for 1000 iterations on the data with A = 0, and report the
12 norm of the weights at the end (excluding the offset wg). Repeat with A = 0.3. Use
n = 0.1. Briefly state which value is preferred and why.

2.5 Class Imbalance (10 points)

A training data set with binary labels is said to be imbalanced, if one of the labels is
underrepresented compared to the other label. The CTR data that we are currently working
with has this issue. In this section, we will look at a simple way to resolve this.

You should also familiarize yourself with two new metrics for prediction quality: precision
and recall. Precision is defined as the number of true positives divided by the total number
of elements labeled as belonging to the positive class. Recall is defined as the number of
true positives divided by the total number of elements that actually belong to the positive
class. In other words, precision measures the exactness of your prediction, whereas recall
measures the completeness of your prediction.

1. (5 pts) Run 5000 iterations of batch descent over the data with A = 0.3 and 5 = 0.01.
Using the learned weights, report the precision and recall for classes 0 and 1 on the
test set.

2. (5 pts) A very simple (and not the best!) solution to the problem of class imbalance
is to oversample from the class that has fewer instances until the imbalance has been
corrected. This introduces other biases into the dataset, as the instances of that class
will be repeated several times. The file “training_oversample.txt” contains a more
even distribution of classes (the positive examples are oversampled). Now run 5000
iterations of batch descent on this training set (A = 0.3,7 = 0.01), and report the
precision/recall values for classes 0 and 1 on the test set.

3 Perceptron Programming Question [30 Points]

In this problem, we will reuse the data from the last problem, but instead train a Perceptron.
This problem is more open ended, you should follow the algorithm as described in class but
it is up to you to decide how to set all of the appropriate hyperparameters and otherwise
demonstrate how to do good experimental design.

1. (10 pts) Report test precision and recall for your Perceptron when trained on the
“training_oversample.txt” data from above. Briefly compare its performance to the
logistic regression model, justifying any differences you see.

2. (10 pts) Describe your experimental setup, including any hyperparameters you used,
wether you had a dev set or cross validation, etc. There is no single correct answer
here, but we want to see that you don’t ignore any of the key issues we described in
class.

3. (5 pts) Does your perceptron converge when run on the “training oversample.txt”
data? Briefly justify why or why not.

4. (5 pts) If you were faced with a new problem, it is interesting to consider wether
you might try logistic regression of Perceptron first. Briefly state one advantage of
each approach (possible answers include differences in runtime, accuracy, complexity
of implementation, etc.). Which approach is your favorite and why? (the last question
has no wrong answer, but for this assignment you must pick one!)

	Naive Bayes with discrete features [25 Points]
	Logistic Regression Programming Question [40 Points]
	Unprocessed Dataset
	Processed Dataset (that you will use...)
	Accessing and Processing the Data
	Batch Gradient Descent (30 points)
	Class Imbalance (10 points)

	Perceptron Programming Question [30 Points]

