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Logistic Regression—
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Maximizing Conditional Log leellhood

P(Y =0|X, W) =

1+emp(wo+2 w; X;)
. PO = 1)x, W) = 2P0+ X wiXi)
l(w) = |n HP(leXJ W) 1+ exp(wo + 5 wiX;)

— Zy]@ 2“@15) —In(1+ exp wo—}-Z@r )

Good news: I(w) is concave function of w, no local optima
problems

Bad news: no closed-form solution to maximize /(w)

Good news: concave functions easy to optimize
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Optimizing concave function —
radient nt

m Conditional likelihood for Logistic Regression is concave. Find
optimum with gradient ascent

Gradient:  Vwl(W )_[8l(w) | o)

Oowg Own,

Update rule: Aw — nvwl(W)

(t+1) ) (® ol(w)
w, +n
ow;
m Gradient ascent is simplest of optimization approaches
e.g., Conjugate gradient ascent can be much better
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Maximize Conditional Log Likelihood:
Gradient ascent

I(w) = Zyj(wo + iwiazg) —In(1 4+ exp(wg + iwixg))

J
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Gradient Ascent for LR
= JEE

Gradient ascent algorithm: iterate until change < ¢
w§ Y —wf) + 0l - PO =1 %7, W]
J

Fori=1,...,k,

wi(t—l-l) - wi(t) + 0> 2y — P(YT =1 x), W)]
J

repeat
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Regularization in linear regression
" S

m Overfitting usually leads to very large parameter choices, e.g.:
2.2+ 3.1 X—-0.30 X2 -1.1 + 4,700,910.7 X — 8,585,638.4 X2 + ...

m Regularized least-squares (a.k.a. ridge regression), for A>0:

2 k
w* = arg minz (t(xj) - Zwﬂz;(xﬂ) + A Zw,z
7 3 i=1
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Linear Separability
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Large parameters — Overfitting
] : .

1 1 1
14+e = 14 e 22 1 4 ¢—100z

m [f data is linearly separable, weights go to infinity

In general, leads to overfitting:
m Penalizing high weights can prevent overfitting...
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Regularized Conditional Log Likelihood
" JEE—

= Add regularlzatlon penalty, e.g., L,:

lnHP y ! w) — _||WH2

m Practical note about wy:

m Gradient of regularized likelihood:
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Standard v. Regularized Updates
* JEE
= Maximum conditional likelihgod estimate
w* = arg max In H Py’ |x7, w)
w T —wi? Y ally - PO =10, W]
J

m Regularized maximum conditional likelihood estimate
N k

oy A
* = J|x7 - 2
W' = argmax 1nHP(y |x7, w) 5 2101

j=1

w§t+1) _ wi(t)_l_77 {_)‘wz(t) + sz[y] _ F)(Yj =1 ‘ xj,VSB]}
J
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Please Stop!! Stopping criterion
* JEE
U(w) = mHP(yj\xj,w)) = Allwl 3

m When do we stop doing gradient descent?

m Because /(w) is strongly concave:
i.e., because of some technical condition

* 1 2
Uw™) = lw) < o1 IIVEW)l2

m Thus, stop when:

Digression: Logistic regression for
_ more than 2 classes
N

m Logistic regression in more general case (C classes), where
Yin{1,...,C}
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Digression: Logistic regression more

generally
= JEE

m Logistic regression in more general case, where

Yin{1,...,C}
for c<C .
P(Y =c|x,w) = exp(weo + Y=y Weils)

1+ ZS;} exp(wero + Zle Weri ;)

for c=C (normalization, so no weights for this class)
1

PY =C|x,w) = —
1+ ZS:} exp(wero + Zle Weri ;)

Learning procedure is basically the same
as what we derived!
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The Cost, The Cost!!! Think about

. the cost...
I
m What's the cost of a gradient update step for LR???

w§t+1) - wz(t)_i_n {_sz(t) + ng[yj —P(YI=1| xj’v%]}
J
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Learning Problems as Expectations
" JE

m  Minimizing loss in training data:

Given dataset:
= Sampled iid from some distribution p(x) on features:

Loss function, e.g., hinge loss, logistic loss,...
We often minimize loss in training data:

1 Y A
(o(W) = 3y 21w ¥)
m However, we should really minimize expected loss on all data:
t(w) = Ex £ )] = [ po0)t(w,x)ix

m  So, we are approximating the integral by the average on the training data
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Gradient ascent in Terms of Expectations
" S

m “True” objective function:

l(w) = Ex [l(w,x)] = /p(x)f(w,x)dx
m Taking the gradient:

m “True” gradient ascent rule:

m How do we estimate expected gradient?
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SGD: Stochastic Gradient Ascent (or Descent)
"
m “True” gradient: Vﬁ(w) = F, [V@(W,X)]

m Sample based approximation:

m What if we estimate gradient with just one sample???
Unbiased estimate of gradient
Very noisy!
Called stochastic gradient ascent (or descent)
= Among many other names
VERY useful in practice!!!
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Stochastic Gradient Ascent for

Loaistic Reﬁression

m Logistic loss as a stochastic function:

Ex [¢((w,x)] = Ex [In P(y|x, w) — Al|w|[3]

m Batch gradient ascent updates:

N
1 Ve (i ;
w™ w4 {—sz“’ ty o P = 1|x<f>,w<“>1}

m Stochastic gradient ascent updates:
Online setting:

wgtﬂ) — wﬁt) + 1 {—)\wgt) + .rgt) " — Py =1x, W(t))]}
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Stochastic Gradient Ascent:

_ general case

m Given a stochastic function of parameters:
Want to find maximum

m Start from w©

m Repeat until convergence:
Get a sample data point xt
Update parameters:

m  Works on the online learning setting!
m  Complexity of each gradient step is constant in number of examples!
m In general, step size changes with iterations
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What you should know...
* JE
m Classification: predict discrete classes rather than

real values

m Logistic regression model: Linear model
Logistic function maps real values to [0,1]

m Optimize conditional likelihood
m Gradient computation

m Overfitting

m Regularization

m Regularized optimization

m Cost of gradient step is high, use stochastic
gradient descent
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