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Classification 

n  Learn: h:X  Y 
¨ X – features 
¨ Y – target classes 

n  Conditional probability: P(Y|X) 

n  Suppose you know P(Y|X) exactly, how should 
you classify? 
¨ Bayes optimal classifier: 

n  How do we estimate P(Y|X)? 
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Logistic Regression 
Logistic 
function 
(or Sigmoid): 

n  Learn P(Y|X) directly 
¨  Assume a particular functional form for link 

function 
¨  Sigmoid applied to a linear function of the input 

features: 

Z 

Features can be discrete or continuous! 
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Logistic Regression –  
a Linear classifier 
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Loss function: Conditional Likelihood 

n  Have a bunch of iid data of the form: 

 

n  Discriminative (logistic regression) loss function: 
 Conditional Data Likelihood 
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Maximizing Conditional Log Likelihood 

Good news: l(w) is concave function of w, no local optima 
problems 

Bad news: no closed-form solution to maximize l(w) 

Good news: concave functions easy to optimize 
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Optimizing concave function – 
Gradient ascent  

n  Conditional likelihood for Logistic Regression is concave. Find 
optimum with gradient ascent 

n  Gradient ascent is simplest of optimization approaches 
¨  e.g., Conjugate gradient ascent can be much better 

Gradient: 

Step size, η>0 

Update rule: 
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Maximize Conditional Log Likelihood: 
Gradient ascent 
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Gradient Ascent for LR 

Gradient ascent algorithm: iterate until change < ε	



    

 

  

 For i=1,…,k,  

 

 

repeat    
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(t) 

(t) 

Regularization in linear regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized least-squares (a.k.a. ridge regression), for λ>0: 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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Linear Separability 
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Large parameters → Overfitting 

n  If data is linearly separable, weights go to infinity 

¨  In general, leads to overfitting: 
n  Penalizing high weights can prevent overfitting… 
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Regularized Conditional Log Likelihood 

n  Add regularization penalty, e.g., L2: 

n  Practical note about w0: 

n  Gradient of regularized likelihood: 
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Standard v. Regularized Updates 

n  Maximum conditional likelihood estimate 

n  Regularized maximum conditional likelihood estimate 
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Please Stop!! Stopping criterion 

n  When do we stop doing gradient descent?  

n  Because l(w) is strongly concave: 
¨  i.e., because of some technical condition 

n  Thus, stop when: 
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Digression: Logistic regression for 
more than 2 classes 

n  Logistic regression in more general case (C classes), where 
Y in {1,…,C} 
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Digression: Logistic regression more 
generally 

n  Logistic regression in more general case, where  
Y in {1,…,C} 

 for c<C 
 
 
 

 for c=C (normalization, so no weights for this class) 
 
 

 

Learning procedure is basically the same  
as what we derived! 
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