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CSE 446 Machine Learning 
Review 
with some

Semi-Supervised Learning 
& a hint of 

SVM

1

SVMs

Daniel Weld

Exam

 Much like midterm, but a bit easier

 Will include one problem from midterm

 Will also include
 Unsupervised learning

 Reinforcement learning Reinforcement learning

 Instance-based learning
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Machine Learning

Study of algorithms that

 improve their performance

 at some task
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 with experience

Data Understanding
Machine 
Learning

Supremacy of Machine Learning
 Machine learning is preferred approach to

 Speech recognition, Natural language processing
 Web search – result ranking
 Computer vision
 Medical outcomes analysis
 Robot control
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 Computational biology
 Sensor networks
 …

 This trend is accelerating
 Improved machine learning algorithms 
 Improved data capture, networking, faster computers
 Software too complex to write by hand
 New sensors / IO devices
 Demand for self-customization to user, environment

Reinforcement Learning

5©2005-2009 
Carlos Guestrin

Applications

 Robotic control
 helicopter maneuvering, autonomous vehicles
Mars rover - path planning, oversubscription planning
 elevator planning

 Game playing - backgammon, tetris, checkers
 Neuroscience
 Computational Finance, Sequential Auctions
 Assisting elderly in simple tasks
 Spoken dialog management
 Communication Networks – switching, routing, flow control
 War planning, evacuation planning
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Planning Agent

Environment

Static vs. Dynamic

Fully 
vs.

Partially 
Ob bl Deterministic 

What action 
next?

Percepts Actions

Observable

Perfect
vs.

Noisy

ete st c
vs. 

Stochastic

Instantaneous 
vs. 

Durative

Bellman Equations for MDP

• <S, A, Pr, R, s0, >
• Define V*(s) {optimal value} as the maximum

expected discounted reward from this state.

• V* should satisfy the following equation:

Bellman Backup

V0= 0

Q1(s,a1) = 2 +  0
~ 2

Q1(s,a2) = 5 +  0.9£ 1 
+  0.1£ 2

~ 6.1

Q1(s,a3) = 4.5 +  2

max

V1= 6.5
(

agreedy = a3

5
a2

a1

s0

s1

V0= 1

V0= 2

1( , 3) 
~ 6.5

a2

a3

s0

s2

s3

Summary RL

 Bellman Equation

 Value iteration

 Credit assignment problem

 Explorqtion / exploitation tradeoff
Greedy in limit of infinite explorationGreedy in limit of infinite exploration

Optomistic exploration

Space of ML Problems
W

hat is

Type of Supervision 
(eg, Experience, Feedback)

Labeled
Examples

Reward Nothing

12

s B
eing Learned?

p

Discrete 
Function

Classification Clustering

Continuous 
Function

Regression

Policy Apprenticeship 
Learning

Reinforcement
Learning

Generalization

 Hypotheses must generalize to correctly classify 
instances not in the training data.

 Simply memorizing training examples is a
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 Simply memorizing training examples is a 
consistent hypothesis that does not generalize.
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Learning as function approximation

 What’s a good approximation?
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Overfitting

Accuracy

0.9

0 8

On training data
On test data
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0.8

0.7

0.6

Model complexity (e.g., number of nodes in decision tree)

Learning as Optimization

 Methods
 Closed form

Greedy search

Gradient ascent

 Loss Function Loss Function
Minimize loss over training data (test data)

 Loss(h,data) = error(h, data) + complexity(h)

 Error + regularization
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Bia / Variance Tradeoff

 Variance: E[ (h(x*) – h(x*))2 ]
How much h(x*) varies between training sets

Reducing variance risks underfitting

 Bias: [h(x*) – f(x*)]
D ib th f h( *)

Slide from T Dietterich

Describes the average error of h(x*)

Reducing bias risks overfitting

Regularization Regularization:            vs. 
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Machine Learning

Supervised Learning

Y Di tY C ti

Parametric

Reinforcement Learning

Unsupervised Learning

Non-parametric
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Y Discrete Y Continuous 

Gaussians
Learned in closed form

Linear Functions
1. Learned in closed form
2. Using gradient descent

Decision Trees
Greedy search; pruning

Probability of class | features
1. Learn P(Y), P(X|Y); apply Bayes 
2. Learn P(Y|X) w/ gradient descent

Non-probabilistic Linear Classifier
Learn w/ gradient descent

Probabilities
 Random variables, distributions

 Axioms of probability

 Marginal, joint & conditional probabilities

 Sum rule, product rule, Bayes rule

 Independence conditional independence Independence, conditional independence
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Our Favorite Distributions
Discrete Continuous

Binary {0, 1} M Values

Single Bernouilli Gaussian
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g
Event 

Sequence
(N trials)

Binomial Multinomial 

Beta DirichletConjugate
Prior

~ Normal 

Inference

Prior Hypothesis

M ximum Lik lih d Maximum Likelihood 
Estimate

Maximum A 
Posteriori Estimate

Bayesian Estimate

Uniform The most likely

Any The most likely

Any Weighted 
combination

Learning Gaussian Parameters

MLE:

Linear Regression
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Loss   

hw(x) = w1x + w0

Argminw Loss(hw) 
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Bayesian Learning

Prior
D t Lik lih d

• Let set of categories be {c1, c2,…cn}
• Let E be description of an instance.
• Determine category of E by determining for each ci

Use Bayes rule:

Normalization
Can ignore

Data Likelihood

Posterior )(

)|()(
)|(

EP

cEPcP
EcP ii

i 

Optimal classification

 Theorem: Bayes classifier hBayes is optimal!

Why?

Naïve Bayes

 Naïve Bayes assumption:
 Features are independent given class:

M ll More generally:

 How many parameters now?
 Suppose X is composed of n binary features

Bag of Words Approach

aardvark 0

about 2

all 2

Africa 1

apple 0apple 0

anxious 0

...

gas 1

...

oil 1

…

Zaire 0

What if we have continuous Xi ?
Eg., character recognition: Xi is ith pixel

Gaussian Naïve Bayes (GNB):

Sometimes assume variance
 is independent of Y (i.e., i), 
 or independent of Xi (i.e., k)
 or both (i.e., )

Naïve Bayes    vs.   Logistic Regression

Generative 

 Assume functional form for 

 P(X|Y)  assume cond indep

Discriminative

• Assume functional form for 

– P(Y|X)   no assumptions

Learning: h:X  Y X – features

Y – target classes

 P(Y)

 Est params from train data

 Gaussian NB for cont features

 Bayes rule to calc. P(Y|X= x)

 P(Y | X)  P(X | Y) P(Y)

 Indirect computation 
 Can also generate a sample of the 

data

31

– Est params from training data

• Handles discrete & cont features

• Directly calculate P(Y|X=x)

– Can’t generate data sample
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Logistic w/ Initial Weights
w0=20   w1= -5  w2 =10

x x x x
x x x

x x

x
x

l(w)

Loss(Hw) = Error(Hw, data)
Minimize error  Maximize l(w) = ln P(DY | Dx, Hw)
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x x

x1

x2

Update rule:

w0

w1

Binary Perceptron Algorithm

 Start with zero weights
 For each training instance (x,y*):

 Classify with current weights

 If correct (i.e., y=y*), no change!
 If wrong: update

Three Views of 
Classification 

 Naïve Bayes:

 Parameters from data statistics

 Parameters: probabilistic 
interpretation

 Training: one pass through the data

 Logistic Regression:

 Parameters from gradient ascent

 Parameters: linear, probabilistic 
Training

Data , p
model, and discriminative

 Training: one pass through the data 
per gradient step, use validation to 
stop

 The perceptron:

 Parameters from reactions to 
mistakes

 Parameters: discriminative 
interpretation

Data

Held-Out
Data

Test
Data

Hypotheses: decision trees  f  : X  Y

• Each internal node 
tests an attribute xi

• Each branch 
assigns an attribute 
value xi=v

Cylinders

3 4 5 6 8

good bad badMaker Horsepower• Each leaf assigns a 
class y 

• To classify input x?

traverse the tree 
from root to leaf, 
output the labeled y 

g Maker Horsepower

low med highamerica asia europe

bad badgoodgood goodbad

What functions can be represented?

Cylinders

3 4 5 6 8

good bad badMaker
Horsepow

er

cyl=3  (cyl=4  (maker=asia  maker=europe))  …

low med highamerica asia europe

bad badgoodgood goodbad

Two Questions

Greedy Algorithm:
– Start from empty decision tree
– Split on the best attribute 

(feature)
– Recurse

1. Which attribute gives the best split?

2. When to stop recursion?

Recurse
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Which attribute gives the best split?

Many answers (accuracy, misclassification rate, etc),

Most common method is: 

“Attribute with the highest information gain, IG”

39

E
nt

ro
py

 (
H

)

Reduced Error Pruning
Split data into training & validation sets (10-33%)

Train on training set (overfitting)

D til f th i i h f lDo until further pruning is harmful:
1) Evaluate effect on validation set of pruning each

possible node (and tree below it)

2) Greedily remove the node that most improves 
accuracy of validation set

40

Ensembles of Classifiers 

Traditional approach: Use one 
classifier

Can one do better?
Approaches:

© Daniel S. Weld
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pp
• Cross-validated committees
• Bagging
• Boosting
• Stacking

Ensembles of Classifiers
 Assume 

 Errors are independent (suppose 30% error)
 Majority vote

 Probability that majority is wrong…

Prob  0.2

 = area under binomial distribution

© Daniel S. Weld
42

• If individual area is 0.3
• Area under curve for 11 wrong is 0.026
• Order of magnitude improvement!

0.1

Number of classifiers in error

Fighting the bias-variance tradeoff

 Simple (a.k.a. weak) learners are good
 e.g., naïve Bayes, logistic regression, decision stumps 

(or shallow decision trees)
 Low variance, don’t usually overfit

 Simple (a.k.a. weak) learners are badp ( )
 High bias, can’t solve hard learning problems

 Can we make weak learners always good???
 No!!!
 But often yes…

Boosting
 Idea: given a weak learner, run it multiple times on 

(reweighted) training data, then let learned classifiers 
vote

 On each iteration t: 
 weight each training example by how incorrectly it was 

classified

[Schapire, 1989]

classified
 Learn a hypothesis – ht

 A strength for this hypothesis – t

 Final classifier:
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Machine Learning

Supervised Learning

Parametric

Reinforcement Learning

Unsupervised Learning

Non-parametric
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Nearest neighbor

Kernel density estimation

Support vector machines

k-Nearest Neighbor
Instance-based learning, four things to specify:

1. A distance metric

Euclidian (and many more)

2. How many nearby neighbors to look at?

k

1. A weighting function (optional)

Unused

2. How to fit with the local points?

Return the average output 
predict: (1/k) Σyi (summing over k nearest neighbors)

K-Nearest-Neighbours for 
Classification 

K = 1K = 3

Kernel Regression
Instance-based learning:

1. A distance metric
Euclidian (and many more)

2. How many nearby neighbors to look at?
All of them

3 A weighting function

D(x1,x2)

wi
Kw

3. A weighting function
wi = exp(-D(xi, query)2 / Kw

2)

Nearby points to the query are weighted strongly, 

Far points weighted weakly. 

The KW parameter is the Kernel Width. Very important.

4. How to fit with the local points?
Predict the weighted average of the outputs:

predict = Σwiyi / Σwi

Support Vector Machines

 Key insight
Max Margin

 Clever trick
 Kernel trick

49

Linear Separators

 Which of these linear separators is optimal? 
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Support Vector Machines
 Maximizing the margin: 

 good according to intuition, theory, practice

 SVMs find separator with max margin
 Convex optimization

 Quadratic programming (off the shelf solns)

 Reduced set of features!

Support Vectors:
• data points on the 

canonical lines

Non-support Vectors:
• everything else
• moving them will not 

change w

What if the data is not linearly 
separable?

Add More Features!!!

What if the data is not linearly 
separable?

0

0.5

1

1.5

x 2 0
1
2
3

√2x1x2

-1.5

-1

-0.5

-1.5 -1 -0.5 0 0.5 1 1.5

x1

0
0.5

1
1.5

2x1
2 0.5

1

1.5

2

2.5

x2
2

-3
-2
-1

2D  3D,  using new features:  F(x) = (x1
2, x2

2, 2 x1x2)

Dual SVM Formulation

Derivation requires computing 
Lagrangian & some advanced math

Notes: 
• One α for 

each training 
example 

Sums over all 
training examples

dot product
scalars

Kernel trick:
Can compute F(x)F(x’) without computing F(x) or F(x’) in many cases

Overfitting?

 Huge feature space with kernels, what about 
overfitting???
Maximizing margin leads to sparse set of support 

vectors 

 Some interesting theory says that SVMs search for g y y
simple hypothesis with large margin

Often robust to overfitting
 But everything overfits sometimes!!!

 Can control by choice of Kernel

Machine Learning

Supervised Learning

Parametric

Reinforcement Learning

Unsupervised Learning

Non-parametric
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Agglomerative Clustering

K-means  

Expectation Maximization (EM)

Principle Component Analysis (PCA)
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Example: K-Means for Segmentation

Original imageK=2 K=3 K=10 Original

Agglomerative Clustering
 Agglomerative clustering:

 First merge very similar instances
 Incrementally build larger clusters out 

of smaller clusters

 Algorithm:
 Maintain a set of clusters
 Initially, each instance in its own 

cluster
 Repeat:

 Pick the two closest clusters
 Merge them into a new cluster
 Stop when there’s only one cluster left

 Produces not one clustering, but a 
family of clusterings represented 
by a dendrogram

Agglomerative Clustering
 How should we define “closest” for clusters 

with multiple elements?

 Many options:
 Closest pair

(single-link clustering)
 Farthest pair

(complete-link clustering)(complete link clustering)
 Average of all pairs
 Ward’s method 

(min variance, like k-means)

 Different choices create 
different clustering behaviors

K-Means

 Pick K random cluster models
 Alternate:

 Assign data instances to different 
models

another iterative clustering algorithm

 Revise each cluster model based 
on  its assigned points

 Stop when no changes

K-Means

 An iterative clustering 
algorithm
 Pick K random points as 

cluster centers (means)
 Alternate:

 Assign data instances to 
closest mean

 Assign each mean to the 
average of its assigned points

 Stop when no points’
assignments change

EM

 Pick K random cluster models
 Alternate:

 Assign data instances 
proportionately to different models

another iterative clustering algorithm

 Revise each cluster model based 
on  its proportionately assigned 
points

 Stop when no changes
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Preference on Cluster Sizes

63

Feature Selection

 Want to learn f:XY
 X=<X1,…,Xn>
 but some features are more important than others

 Approach: select subset of features to be used by Approach: select subset of features to be used by 
learning algorithm
 Score each feature (or sets of features)
 Select set of features with best score

Linear projection and reconstruction

x2
project into
1-dimension

z1

x1

reconstruction: only know z1, 
and projection weights, what 

was (x1,x2)

Basic PCA algorithm

 Start from m by n data matrix X

 Recenter: subtract mean from each row of X
 Xc  X – X

 Compute covariance matrix:
   1/m Xc

T Xc

 Find eigen vectors and values of 
 Principal components: k eigen vectors with 

highest eigen values

Machine Learning

Supervised Learning

Reinforcement Learning

Unsupervised Learning
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Co-Training  Motivation

 Learning methods need labeled data
 Lots of <x, f(x)> pairs

 Hard to get… (who wants to label data?)

 But unlabeled data is usually plentiful…

© Daniel S. Weld
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But unlabeled data is usually plentiful…
 Could we use this instead??????

 Semi-supervised learning
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Co-training

 Have little labeled data + lots of unlabeled

 Each instance has two parts:
x = [x1, x2]

x1 x2 conditionally independent given f(x)

Suppose

© Daniel S. Weld
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x1, x2 conditionally independent given f(x)

 Each half can be used to classify instance
f1, f2  such that   f1(x1) ~ f2(x2) ~ f(x)

 Both f1, f2 are learnable
f1  H1,    f2  H2,     learning algorithms A1, A2

Co-training Example

Prof. Domingos

Students: Parag,… 

Projects: SRL, 
Data mining

CSE 546: Data Mining

Course Description:…

Topics:…

© Daniel S. Weld
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I teach a class on 
data mining

Homework: …

Jesse

Classes taken: 
1. Data mining
2. Machine learning

Research: SRL 

Without Co-training f1(x1) ~ f2(x2) ~ f(x)

A1 learns f1 from x1

A2 learns f2 from x2A Few Labeled 
Instances

f2

<[x1, x2], f()>

© Daniel S. Weld
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[x1, x2]

Unlabeled Instances

f1

Combine with ensemble?

f’

Co-training f1(x1) ~ f2(x2) ~ f(x)

A1 learns f1 from x1

A2 learns f2 from x2A Few Labeled 
Instances

<[x1, x2], f()>

© Daniel S. Weld
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[x1, x2]

Lots of Labeled Instances

<[x1, x2], f1(x1)>
f2

Hypothesis

A2

Unlabeled Instances

A
1

f1

Observations 

 Can apply A1 to generate as much training data as 
one wants
 If x1 is conditionally independent of x2 / f(x),

 then the error in the labels produced by A1

 will look like random noise to A2 !!!

© Daniel S. Weld
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 Thus no limit to quality of the hypothesis A2 can make

Co-training f1(x1) ~ f2(x2) ~ f(x)

A1 learns f1 from x1

A2 learns f2 from x2A Few Labeled 
Instances

<[x1, x2], f()>

Lots of

© Daniel S. Weld
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[x1, x2]

Lots of Labeled Instances

<[x1, x2], f1(x1)>

Hypothesis

A2

Unlabeled Instances

A
1

f1 f2f2f1
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It really works!
 Learning to classify web pages as course pages

 x1 = bag of words on a page

 x2 = bag of words from all anchors pointing to a page

 Naïve Bayes classifiers
 12 labeled pages

© Daniel S. Weld
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 1039 unlabeled


