

Exam

- Much like midterm, but a bit easier
- Will include one problem from midterm

Will also include

- Unsupervised learning
- Reinforcement learning
- Instance-based learning

Space of ML Problems							
₹	Type of Supervision (eg, Experience, Feedback)						
/hat is Being Learned		Labeled Examples	Reward	Nothing			
	Discrete Function	Classification		Clustering			
	Continuous Function	Regression					
	Policy	Apprenticeship Learning	Reinforcement Learning				
Ś			12				

Our Favorite Distributions							
	Discrete		Continuous				
	Binary {0, 1}	M Values					
Single Event	Bernouilli		Gaussian ~ Normal				
Sequence (N trials)	Binomial	Multinomial	5(e+/20)				
Conjugate Prior	↓ Beta	↓ Dirichlet	22				

Inference		
	Prior	Hypothesis
Maximum Likelihood Estimate	Uniform	The most likely
Maximum A Posteriori Estimate	Any	The most likely
Bayesian Estimate	Any	Weighted combination

Optimal classification

• Theorem: Bayes classifier h_{Bayes} is optimal!

$$error_{true}(h_{Bayes}) \leq error_{true}(h), \quad \forall h$$

$$\Box \text{ Why?}$$

$$p_h(error) = \int_x p_h(error|x)p(x)$$

$$= \int_x \int_y \delta(h(x), y)p(y|x)p(x)$$

Ensembles of Classifiers Traditional approach: Use one classifier Can one do better? Approaches: Cross-validated committees Bagging

- Boosting
- Stacking

© Daniel S. Weld

- Start from m by n data matrix X
- Recenter: subtract mean from each row of X □ X_c ← X − X
- Compute covariance matrix:
 □ Σ ← 1/m X_c^T X_c
- Find eigen vectors and values of Σ
- Principal components: k eigen vectors with highest eigen values

It really works!							
 Learning to classify web p x1 = bag of words on a pag x2 = bag of words from all a Naïve Bayes classifiers 12 labeled pages 1039 unlabeled 	ages as cours e anchors pointing	se pages g to a page					
Page-based classifier	Hyperlink-based classifier	Combined classifier					
Supervised training 12.9	12.4	11.1					
Co-training 6.2	11.6	5.0					
Table 2: Error rate in percent for classifying web pages a on only the labeled examples. Bottom row shows errors w	is course home pages. The to hen co-training, using both la	op row shows errors when train abeled and unlabeled examples.					