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CSE 446 Machine Learning 
Review 
with some

Semi-Supervised Learning 
& a hint of 

SVM

1

SVMs

Daniel Weld

Exam

 Much like midterm, but a bit easier

 Will include one problem from midterm

 Will also include
 Unsupervised learning

 Reinforcement learning Reinforcement learning

 Instance-based learning
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Machine Learning

Study of algorithms that

 improve their performance

 at some task

3

 with experience

Data Understanding
Machine 
Learning

Supremacy of Machine Learning
 Machine learning is preferred approach to

 Speech recognition, Natural language processing
 Web search – result ranking
 Computer vision
 Medical outcomes analysis
 Robot control
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 Computational biology
 Sensor networks
 …

 This trend is accelerating
 Improved machine learning algorithms 
 Improved data capture, networking, faster computers
 Software too complex to write by hand
 New sensors / IO devices
 Demand for self-customization to user, environment

Reinforcement Learning

5©2005-2009 
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Applications

 Robotic control
 helicopter maneuvering, autonomous vehicles
Mars rover - path planning, oversubscription planning
 elevator planning

 Game playing - backgammon, tetris, checkers
 Neuroscience
 Computational Finance, Sequential Auctions
 Assisting elderly in simple tasks
 Spoken dialog management
 Communication Networks – switching, routing, flow control
 War planning, evacuation planning
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Planning Agent

Environment

Static vs. Dynamic

Fully 
vs.

Partially 
Ob bl Deterministic 

What action 
next?

Percepts Actions

Observable

Perfect
vs.

Noisy

ete st c
vs. 

Stochastic

Instantaneous 
vs. 

Durative

Bellman Equations for MDP

• <S, A, Pr, R, s0, >
• Define V*(s) {optimal value} as the maximum

expected discounted reward from this state.

• V* should satisfy the following equation:

Bellman Backup

V0= 0

Q1(s,a1) = 2 +  0
~ 2

Q1(s,a2) = 5 +  0.9£ 1 
+  0.1£ 2

~ 6.1

Q1(s,a3) = 4.5 +  2

max

V1= 6.5
(

agreedy = a3

5
a2

a1

s0

s1

V0= 1

V0= 2

1( , 3) 
~ 6.5

a2

a3

s0

s2

s3

Summary RL

 Bellman Equation

 Value iteration

 Credit assignment problem

 Explorqtion / exploitation tradeoff
Greedy in limit of infinite explorationGreedy in limit of infinite exploration

Optomistic exploration

Space of ML Problems
W

hat is

Type of Supervision 
(eg, Experience, Feedback)

Labeled
Examples

Reward Nothing
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s B
eing Learned?

p

Discrete 
Function

Classification Clustering

Continuous 
Function

Regression

Policy Apprenticeship 
Learning

Reinforcement
Learning

Generalization

 Hypotheses must generalize to correctly classify 
instances not in the training data.

 Simply memorizing training examples is a

13

 Simply memorizing training examples is a 
consistent hypothesis that does not generalize.
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Learning as function approximation

 What’s a good approximation?
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Overfitting

Accuracy

0.9

0 8

On training data
On test data
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0.8

0.7

0.6

Model complexity (e.g., number of nodes in decision tree)

Learning as Optimization

 Methods
 Closed form

Greedy search

Gradient ascent

 Loss Function Loss Function
Minimize loss over training data (test data)

 Loss(h,data) = error(h, data) + complexity(h)

 Error + regularization
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Bia / Variance Tradeoff

 Variance: E[ (h(x*) – h(x*))2 ]
How much h(x*) varies between training sets

Reducing variance risks underfitting

 Bias: [h(x*) – f(x*)]
D ib th f h( *)

Slide from T Dietterich

Describes the average error of h(x*)

Reducing bias risks overfitting

Regularization Regularization:            vs. 



4

Machine Learning

Supervised Learning

Y Di tY C ti

Parametric

Reinforcement Learning

Unsupervised Learning

Non-parametric
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Y Discrete Y Continuous 

Gaussians
Learned in closed form

Linear Functions
1. Learned in closed form
2. Using gradient descent

Decision Trees
Greedy search; pruning

Probability of class | features
1. Learn P(Y), P(X|Y); apply Bayes 
2. Learn P(Y|X) w/ gradient descent

Non-probabilistic Linear Classifier
Learn w/ gradient descent

Probabilities
 Random variables, distributions

 Axioms of probability

 Marginal, joint & conditional probabilities

 Sum rule, product rule, Bayes rule

 Independence conditional independence Independence, conditional independence

21

Our Favorite Distributions
Discrete Continuous

Binary {0, 1} M Values

Single Bernouilli Gaussian
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g
Event 

Sequence
(N trials)

Binomial Multinomial 

Beta DirichletConjugate
Prior

~ Normal 

Inference

Prior Hypothesis

M ximum Lik lih d Maximum Likelihood 
Estimate

Maximum A 
Posteriori Estimate

Bayesian Estimate

Uniform The most likely

Any The most likely

Any Weighted 
combination

Learning Gaussian Parameters

MLE:

Linear Regression
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hw(x) = w1x + w0

Argminw Loss(hw) 
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Bayesian Learning

Prior
D t Lik lih d

• Let set of categories be {c1, c2,…cn}
• Let E be description of an instance.
• Determine category of E by determining for each ci

Use Bayes rule:

Normalization
Can ignore

Data Likelihood

Posterior )(

)|()(
)|(

EP

cEPcP
EcP ii

i 

Optimal classification

 Theorem: Bayes classifier hBayes is optimal!

Why?

Naïve Bayes

 Naïve Bayes assumption:
 Features are independent given class:

M ll More generally:

 How many parameters now?
 Suppose X is composed of n binary features

Bag of Words Approach

aardvark 0

about 2

all 2

Africa 1

apple 0apple 0

anxious 0

...

gas 1

...

oil 1

…

Zaire 0

What if we have continuous Xi ?
Eg., character recognition: Xi is ith pixel

Gaussian Naïve Bayes (GNB):

Sometimes assume variance
 is independent of Y (i.e., i), 
 or independent of Xi (i.e., k)
 or both (i.e., )

Naïve Bayes    vs.   Logistic Regression

Generative 

 Assume functional form for 

 P(X|Y)  assume cond indep

Discriminative

• Assume functional form for 

– P(Y|X)   no assumptions

Learning: h:X  Y X – features

Y – target classes

 P(Y)

 Est params from train data

 Gaussian NB for cont features

 Bayes rule to calc. P(Y|X= x)

 P(Y | X)  P(X | Y) P(Y)

 Indirect computation 
 Can also generate a sample of the 

data

31

– Est params from training data

• Handles discrete & cont features

• Directly calculate P(Y|X=x)

– Can’t generate data sample
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Logistic w/ Initial Weights
w0=20   w1= -5  w2 =10

x x x x
x x x

x x

x
x

l(w)

Loss(Hw) = Error(Hw, data)
Minimize error  Maximize l(w) = ln P(DY | Dx, Hw)
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x x

x1

x2

Update rule:

w0

w1

Binary Perceptron Algorithm

 Start with zero weights
 For each training instance (x,y*):

 Classify with current weights

 If correct (i.e., y=y*), no change!
 If wrong: update

Three Views of 
Classification 

 Naïve Bayes:

 Parameters from data statistics

 Parameters: probabilistic 
interpretation

 Training: one pass through the data

 Logistic Regression:

 Parameters from gradient ascent

 Parameters: linear, probabilistic 
Training

Data , p
model, and discriminative

 Training: one pass through the data 
per gradient step, use validation to 
stop

 The perceptron:

 Parameters from reactions to 
mistakes

 Parameters: discriminative 
interpretation

Data

Held-Out
Data

Test
Data

Hypotheses: decision trees  f  : X  Y

• Each internal node 
tests an attribute xi

• Each branch 
assigns an attribute 
value xi=v

Cylinders

3 4 5 6 8

good bad badMaker Horsepower• Each leaf assigns a 
class y 

• To classify input x?

traverse the tree 
from root to leaf, 
output the labeled y 

g Maker Horsepower

low med highamerica asia europe

bad badgoodgood goodbad

What functions can be represented?

Cylinders

3 4 5 6 8

good bad badMaker
Horsepow

er

cyl=3  (cyl=4  (maker=asia  maker=europe))  …

low med highamerica asia europe

bad badgoodgood goodbad

Two Questions

Greedy Algorithm:
– Start from empty decision tree
– Split on the best attribute 

(feature)
– Recurse

1. Which attribute gives the best split?

2. When to stop recursion?

Recurse
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Which attribute gives the best split?

Many answers (accuracy, misclassification rate, etc),

Most common method is: 

“Attribute with the highest information gain, IG”

39

E
nt

ro
py

 (
H

)

Reduced Error Pruning
Split data into training & validation sets (10-33%)

Train on training set (overfitting)

D til f th i i h f lDo until further pruning is harmful:
1) Evaluate effect on validation set of pruning each

possible node (and tree below it)

2) Greedily remove the node that most improves 
accuracy of validation set

40

Ensembles of Classifiers 

Traditional approach: Use one 
classifier

Can one do better?
Approaches:

© Daniel S. Weld
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pp
• Cross-validated committees
• Bagging
• Boosting
• Stacking

Ensembles of Classifiers
 Assume 

 Errors are independent (suppose 30% error)
 Majority vote

 Probability that majority is wrong…

Prob  0.2

 = area under binomial distribution

© Daniel S. Weld
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• If individual area is 0.3
• Area under curve for 11 wrong is 0.026
• Order of magnitude improvement!

0.1

Number of classifiers in error

Fighting the bias-variance tradeoff

 Simple (a.k.a. weak) learners are good
 e.g., naïve Bayes, logistic regression, decision stumps 

(or shallow decision trees)
 Low variance, don’t usually overfit

 Simple (a.k.a. weak) learners are badp ( )
 High bias, can’t solve hard learning problems

 Can we make weak learners always good???
 No!!!
 But often yes…

Boosting
 Idea: given a weak learner, run it multiple times on 

(reweighted) training data, then let learned classifiers 
vote

 On each iteration t: 
 weight each training example by how incorrectly it was 

classified

[Schapire, 1989]

classified
 Learn a hypothesis – ht

 A strength for this hypothesis – t

 Final classifier:
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Machine Learning

Supervised Learning

Parametric

Reinforcement Learning

Unsupervised Learning

Non-parametric
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Nearest neighbor

Kernel density estimation

Support vector machines

k-Nearest Neighbor
Instance-based learning, four things to specify:

1. A distance metric

Euclidian (and many more)

2. How many nearby neighbors to look at?

k

1. A weighting function (optional)

Unused

2. How to fit with the local points?

Return the average output 
predict: (1/k) Σyi (summing over k nearest neighbors)

K-Nearest-Neighbours for 
Classification 

K = 1K = 3

Kernel Regression
Instance-based learning:

1. A distance metric
Euclidian (and many more)

2. How many nearby neighbors to look at?
All of them

3 A weighting function

D(x1,x2)

wi
Kw

3. A weighting function
wi = exp(-D(xi, query)2 / Kw

2)

Nearby points to the query are weighted strongly, 

Far points weighted weakly. 

The KW parameter is the Kernel Width. Very important.

4. How to fit with the local points?
Predict the weighted average of the outputs:

predict = Σwiyi / Σwi

Support Vector Machines

 Key insight
Max Margin

 Clever trick
 Kernel trick

49

Linear Separators

 Which of these linear separators is optimal? 
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Support Vector Machines
 Maximizing the margin: 

 good according to intuition, theory, practice

 SVMs find separator with max margin
 Convex optimization

 Quadratic programming (off the shelf solns)

 Reduced set of features!

Support Vectors:
• data points on the 

canonical lines

Non-support Vectors:
• everything else
• moving them will not 

change w

What if the data is not linearly 
separable?

Add More Features!!!

What if the data is not linearly 
separable?
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2D  3D,  using new features:  F(x) = (x1
2, x2

2, 2 x1x2)

Dual SVM Formulation

Derivation requires computing 
Lagrangian & some advanced math

Notes: 
• One α for 

each training 
example 

Sums over all 
training examples

dot product
scalars

Kernel trick:
Can compute F(x)F(x’) without computing F(x) or F(x’) in many cases

Overfitting?

 Huge feature space with kernels, what about 
overfitting???
Maximizing margin leads to sparse set of support 

vectors 

 Some interesting theory says that SVMs search for g y y
simple hypothesis with large margin

Often robust to overfitting
 But everything overfits sometimes!!!

 Can control by choice of Kernel

Machine Learning

Supervised Learning

Parametric

Reinforcement Learning

Unsupervised Learning

Non-parametric

56

Agglomerative Clustering

K-means  

Expectation Maximization (EM)

Principle Component Analysis (PCA)
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Example: K-Means for Segmentation

Original imageK=2 K=3 K=10 Original

Agglomerative Clustering
 Agglomerative clustering:

 First merge very similar instances
 Incrementally build larger clusters out 

of smaller clusters

 Algorithm:
 Maintain a set of clusters
 Initially, each instance in its own 

cluster
 Repeat:

 Pick the two closest clusters
 Merge them into a new cluster
 Stop when there’s only one cluster left

 Produces not one clustering, but a 
family of clusterings represented 
by a dendrogram

Agglomerative Clustering
 How should we define “closest” for clusters 

with multiple elements?

 Many options:
 Closest pair

(single-link clustering)
 Farthest pair

(complete-link clustering)(complete link clustering)
 Average of all pairs
 Ward’s method 

(min variance, like k-means)

 Different choices create 
different clustering behaviors

K-Means

 Pick K random cluster models
 Alternate:

 Assign data instances to different 
models

another iterative clustering algorithm

 Revise each cluster model based 
on  its assigned points

 Stop when no changes

K-Means

 An iterative clustering 
algorithm
 Pick K random points as 

cluster centers (means)
 Alternate:

 Assign data instances to 
closest mean

 Assign each mean to the 
average of its assigned points

 Stop when no points’
assignments change

EM

 Pick K random cluster models
 Alternate:

 Assign data instances 
proportionately to different models

another iterative clustering algorithm

 Revise each cluster model based 
on  its proportionately assigned 
points

 Stop when no changes



11

Preference on Cluster Sizes

63

Feature Selection

 Want to learn f:XY
 X=<X1,…,Xn>
 but some features are more important than others

 Approach: select subset of features to be used by Approach: select subset of features to be used by 
learning algorithm
 Score each feature (or sets of features)
 Select set of features with best score

Linear projection and reconstruction

x2
project into
1-dimension

z1

x1

reconstruction: only know z1, 
and projection weights, what 

was (x1,x2)

Basic PCA algorithm

 Start from m by n data matrix X

 Recenter: subtract mean from each row of X
 Xc  X – X

 Compute covariance matrix:
   1/m Xc

T Xc

 Find eigen vectors and values of 
 Principal components: k eigen vectors with 

highest eigen values

Machine Learning

Supervised Learning

Reinforcement Learning

Unsupervised Learning
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Co-Training  Motivation

 Learning methods need labeled data
 Lots of <x, f(x)> pairs

 Hard to get… (who wants to label data?)

 But unlabeled data is usually plentiful…

© Daniel S. Weld
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But unlabeled data is usually plentiful…
 Could we use this instead??????

 Semi-supervised learning
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Co-training

 Have little labeled data + lots of unlabeled

 Each instance has two parts:
x = [x1, x2]

x1 x2 conditionally independent given f(x)

Suppose

© Daniel S. Weld
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x1, x2 conditionally independent given f(x)

 Each half can be used to classify instance
f1, f2  such that   f1(x1) ~ f2(x2) ~ f(x)

 Both f1, f2 are learnable
f1  H1,    f2  H2,     learning algorithms A1, A2

Co-training Example

Prof. Domingos

Students: Parag,… 

Projects: SRL, 
Data mining

CSE 546: Data Mining

Course Description:…

Topics:…

© Daniel S. Weld
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I teach a class on 
data mining

Homework: …

Jesse

Classes taken: 
1. Data mining
2. Machine learning

Research: SRL 

Without Co-training f1(x1) ~ f2(x2) ~ f(x)

A1 learns f1 from x1

A2 learns f2 from x2A Few Labeled 
Instances

f2

<[x1, x2], f()>

© Daniel S. Weld
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[x1, x2]

Unlabeled Instances

f1

Combine with ensemble?

f’

Co-training f1(x1) ~ f2(x2) ~ f(x)

A1 learns f1 from x1

A2 learns f2 from x2A Few Labeled 
Instances

<[x1, x2], f()>

© Daniel S. Weld
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[x1, x2]

Lots of Labeled Instances

<[x1, x2], f1(x1)>
f2

Hypothesis

A2

Unlabeled Instances

A
1

f1

Observations 

 Can apply A1 to generate as much training data as 
one wants
 If x1 is conditionally independent of x2 / f(x),

 then the error in the labels produced by A1

 will look like random noise to A2 !!!

© Daniel S. Weld
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 Thus no limit to quality of the hypothesis A2 can make

Co-training f1(x1) ~ f2(x2) ~ f(x)

A1 learns f1 from x1

A2 learns f2 from x2A Few Labeled 
Instances

<[x1, x2], f()>

Lots of

© Daniel S. Weld
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[x1, x2]

Lots of Labeled Instances

<[x1, x2], f1(x1)>

Hypothesis

A2

Unlabeled Instances

A
1

f1 f2f2f1
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It really works!
 Learning to classify web pages as course pages

 x1 = bag of words on a page

 x2 = bag of words from all anchors pointing to a page

 Naïve Bayes classifiers
 12 labeled pages

© Daniel S. Weld
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 1039 unlabeled


