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Instance-Based Learning 
(aka non-parametric methods)
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Machine Learning

Supervised Learning

Parametric

Reinforcement Learning

Unsupervised Learning

Non‐parametric
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Nonparametric Methods
• Parametric models restricted to specific forms

• May not be a good fit

• Nonparametric methods make few assumptions
• Often work extremely well in practice

Todo

• Bishop approach is too theoretical – don’t do it!
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Histograms

Histogram methods partition 
the data space into distinct bins 
with widths i and count the 
number of observations, ni, in 
each bin.

• Often, the same width is used 
for all bins, i = .

•  acts as a smoothing 
parameter.

In an D-dimensional space, 
using M bins in each dimension 
will require MD bins!

Why is this bad?



2

Nonparametric Methods

• Assume observations 
drawn from a density p(x) 
and consider a small 
region R containing x 
such that

If V (the volume of R) is 
sufficiently small, p(x) is 
approximately constant 
over R and

• The probability that K out 
of N observations lie 
inside R is  Bin(K | N,P ) 
and if N is large

Thus

Nonparametric Methods (3.5)

• Hold K fixed determine V from dataHold K fixed, determine V from data

• K-nearest-neighbour approach

• Hold V fixed, determine K from data

• Kernel-density estimation

Kernel Density Estimation

•Fix V, estimate K from the data. 

•Let R be a hypercube centred on x 
•Define the kernel function (Parzen window)

It follows that 

and hence

Kernel Density Estimation

To avoid discontinuities 
in p(x), use a smooth 
kernel, e.g. a Gaussian

Any kernel such that

will work.

h acts as a smoother.

Nearest Neighbour Density Estimation

Fix K, estimate V from data.

Consider a hypersphere centred on x 

Let it grow to a volume, V* 
that includes K of N data points. 

Then

K acts as a smoother.

Pros / Cons

• Nonparametric models (besides histograms)
• Requires storing and computing with the entire data 

set. 

• Parametric models, once fitted, 
M h ffi i t i t f t d• Much more efficient in terms of storage and 
computation.
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K-Nearest-Neighbours for Classification

• Given a data set with Nk data points from class Ck and                 
,  we have

• and correspondingly

• Since                       , Bayes’ theorem gives

K-Nearest-Neighbours for Classification 

K = 1K = 3

K-Nearest-Neighbours for Classification

• K acts as a smoother
• As N, the error rate of the 1-nearest-neighbour classifier is never more 
than twice the optimal error (obtained from the true conditional class 
distributions).

Linear Regression: What can go wrong?

What do we do if the bias is too strong?
• Might want the data to drive the complexity of the model!
• Try instance-based Learning (a.k.a. non-parametric methods)?

Using data to predict new data

Y

X

Nearest neighbor with Lots of Data

18
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Univariate 1-Nearest Neighbor

Given datapoints (x1,y1) (x2,y2)..(xN,yN),where we assume yi=f(xi) for some 
unknown function f.
Given query point xq, your job is to predict 
Nearest Neighbor:
1.   Find the closest xi in our set of datapoints

 qxfy ˆ

  i xxnni  argmin
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  qi
i

xxnni argmin

 nniyy ˆ2.  Predict

Here’s a 
dataset with 
one input, one 
output and four 
datapoints.

x

y

Here, this is 
the closest 
datapoint

1-Nearest Neighbor is an example of….
Instance-based learning

x1 y1

x2 y2

x3 y3

…

A function approximator that 
has been around since about 
1910.

To make a prediction, search 
database for similar datapoints, 

To define an instance-based learner, specify four things:
• A distance metric
• How many nearby neighbors to look at?
• A weighting function (optional)
• How to fit with the local points?

xn ynand fit with the local points.

1-Nearest Neighbor
To define an instance-based learner, specify four things:

1. A distance metric
Euclidian (and many more)

2. How many nearby neighbors to look at?

One

21

One

3. A weighting function (optional)
Unused

4. How to fit with the local points?
Just predict the same output as the nearest neighbor.

Multivariate 1-NN examples

RegressionClassification
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Notable distance metrics 
(and their level sets)

Scaled Euclidian (L2)

23

L1 norm (absolute)

L1 (max) norm

Mahalanobis (here, 
 on the previous slide is not 
necessarily diagonal, but is 
symmetric

Consistency of 1-NN
• Consider an estimator fn trained on n examples

e.g., 1-NN, neural nets, regression,...

• Estimator is consistent if true error goes to zero as 
amount of data increases
e.g., for noise-free data, consistent if for any data distribution p(x):



• Linear regression is not consistent!
Representation bias

• 1-NN is consistent 
What about noisy data?

What about variance? 

MSE( fn )  p(x) fn(x) yx 2
dx

x
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1-NN overfits? k-Nearest Neighbor
Instance-based learning, four things to specify:

1. A distance metric

Euclidian (and many more)

2. How many nearby neighbors to look at?

k

1. A weighting function (optional)

Unused

2. How to fit with the local points?

Return the average output 

predict: (1/k) Σyi (summing over k nearest neighbors)

k-Nearest Neighbor 

k=1

Which is better? What can we do about the discontinuities?

k=9

Weighted distance metrics
Suppose the input vectors x1, x2, …xn are two dimensional:

x1 = ( x11 , x12 ) , x2 = ( x21 , x22 ) , …xN = ( xN1 , xN2 ).

Nearest-neighbor regions in input space:

Dist(xi,xj) =(xi1 – xj1)2+(3xi2 – 3xj2)2

The relative scaling of the distance metric affect region shapes

Dist(xi,xj) = (xi1 – xj1)2 + (xi2 – xj2)2

Weighted Euclidean distance metric

D(x,x')    i
2 xi  x 'i 2

i



D(x,x')   (x-x')T (x-x')  

 
where

Or equivalently,

Other Metrics…

• Mahalanobis, Rank-based, Correlation-based,… 

Kernel Regression
Instance-based learning:

1. A distance metric
Euclidian (and many more)

2. How many nearby neighbors to look at?
All of them

3 A weighting function

D(x1,x2)

wi
Kw

3. A weighting function
wi = exp(-D(xi, query)2 / Kw

2)

Nearby points to the query are weighted strongly, 

Far points weighted weakly. 

The KW parameter is the Kernel Width. Very important.

4. How to fit with the local points?
Predict the weighted average of the outputs:

predict = Σwiyi / Σwi
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Many possible weighting functions

wi = exp(-D(xi, query)2 / Kw
2)

Typically:
• Choose D manually
• Optimize Kw using 

gradient descent

(Our examples use Gaussian)

Kernel regression predictions

Increasing the kernel width Kw means further away 
points get an opportunity to influence you.
As Kw∞, the prediction tends to the global average.

KW=10 KW=20 KW=80

Kernel regression on our test cases

N
N

 k
=
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KW=1/32 of x-axis width. KW=1/32 of x-axis width. KW=1/16 axis width.

Choosing a good Kw is important! Remind you of anything we have seen?
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Kernel regression: problem solved?

KW = Best. KW = Best. KW = Best.

Where are we having problems?

• Sometimes in the middle…

• Generally, on the ends (extrapolation is hard!)

Time to try something more powerful…!!!

Locally weighted regression

Kernel regression:
• Take a very very conservative function 

approximator called AVERAGING. 
• Locally weight it.

Locally weighted regression:
• Take a conservative function approximator

called LINEAR REGRESSION. 
• Locally weight it.

Locally weighted regression
Instance-based learning, four things to specify:
• A distance metric

Any

• How many nearby neighbors to look at?

All of them

• A weighting function (optional)

Kernels: wi = exp(-D(xi, query)2 / Kw2)

• How to fit with the local points?

General weighted regression:
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How LWR works

Query

Solving for each 
input: complex 
surface!

Linear regression
 Same parameters for 

all queries

Locally weighted regression
 Solve weighted linear regression

for each query

  YXXXβ̂ T1T 
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LWR on our test cases

KW=1/32 of x-axis width. KW=1/32 of x-axis width. KW=1/16 axis width.
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KW = 1/16 of x-axis width. KW = 1/32 of x-axis width. KW = 1/8 of x-axis width.

LW
R

Locally weighted polynomial regression

Kernel Regression: Kernel width KW at optimal level.

KW = 1/100 x-axis KW = 1/40 x-axis KW = 1/15 x-axis

Local quadratic regression is easy: just add quadratic terms to the 
WXTWX matrix. As the regression degree increases, the kernel width 
can increase without introducing bias.

Challenges for based learning

• Must store and retrieve all data!
• Most real work done during testing

• For every test sample, must search through all dataset – very slow!

• But, there are fast methods for dealing with large datasets

• Instance-based learning often poor with noisy or irrelevant 
featuresfeatures
• In high dimensional spaces, all points will be very far from each other

• Can need a number of examples that is exponential in the dimension 
of X

• But, sometimes you are ok if you are clever about features

Curse of the irrelevant feature

X2 + + +--

This is a contrived example, but similar problems are common in practice
Need some form of feature selection!!

X1

+
+

+ +
+

+ +
+

+-
-

- -
-

-

Curse of Dimensionality
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Curse of Dimensionality

Fraction of volume of sphere 
lying in the range r = [1, 1-]

Gaussian Densities in 
higher dimensions

Side-Stepping the Curse

• Dimensionality reduction
• Eg, PCA

• Then use NN

44

In Summary: Instance-Based Learning

• k-NN
• Simplest learning algorithm
• With sufficient data, very hard to beat “strawman” approach
• Picking k?

• Kernel regression
Set k to n (number of data points) and optimize weights by

45

• Set k to n (number of data points) and optimize weights by 
gradient descent

• Smoother than k-NN

• Locally weighted regression
• Generalizes kernel regression, not just local average

• Curse of dimensionality
• Must remember (very large) dataset for prediction
• Irrelevant features often killers for instance-based approaches
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