CSE 446 Gaussian Naïve Bayes & Logistic Regression Winter 2012

Dan Weld

Some slides from Carlos Guestrin, Luke Zettlemoyer

Last Time

- Learning Gaussians
- Naïve Bayes

Today

- Gaussians Naïve Bayes
- Logistic Regression

Text Classification
Bag of Words Representation

and Description of the Company of the

Naïve Bayes

- Naïve Bayes assumption:
 - Features are independent given class:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$

= $P(X_1|Y)P(X_2|Y)$

- More generally:

$$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$

- How many parameters now?
 - Suppose **X** is composed of *n* binary features

NB with Bag of Words for Text Classification

- Learning phase:
 - Prior P(Y_m)
 - Count how many documents from topic m / total # docs
 - $-P(X_i|Y_m)$
 - \bullet Let $\boldsymbol{B}_{\boldsymbol{m}}$ be a bag of words formed from all the docs in topic \boldsymbol{m}
 - Let #(i, B) be the number of times word i is in bag B
 - $\bullet \ \ \mathsf{P}(\mathsf{X}_{\mathsf{i}} \ | \ \mathsf{Y}_{\mathsf{m}}) = (\#(\mathsf{i}, \ \mathsf{B}_{\mathsf{m}}) + 1) \ / \ (\mathsf{W} + \Sigma_{\mathsf{j}} \#(\mathsf{j}, \ \mathsf{B}_{\mathsf{m}})) \qquad \text{where W=\#unique words}$
- Test phase:
 - For each document
 - Use naïve Bayes decision rule

$$h_{NB}(\mathbf{x}) \ = \ \arg\max_{y} P(y) \prod_{i=1}^{LengthDoc} P(x_i|y)$$

Easy to Implement

- But...
- If you do... it probably won't work...

Probabilities: Important Detail!

• P(spam | $X_1 ... X_n$) = $\prod_i P(spam | X_i)$

Any more potential problems here?

- We are multiplying lots of small numbers Danger of underflow!
 - 0.5⁵⁷ = 7 E -18
- Solution? Use logs and add!
 - $p_1 * p_2 = e^{\log(p_1) + \log(p_2)}$
 - Always keep in log form

Naïve Bayes Posterior Probabilities

- Classification results of naïve Bayes
 - I.e. the class with maximum posterior probability...
 - Usually fairly accurate (?!?!?)
- However, due to the inadequacy of the conditional independence assumption...
 - Actual posterior-probability estimates not accurate.
 - Output probabilities generally very close to 0 or 1.

10

Twenty News Groups results

Given 1000 training documents from each group Learn to classify new documents according to which newsgroup it came from

comp.graphics misc.forsale comp.os.ms-windows.misc rec.autos rec.motorcycles comp.sys.mac.hardware comp.windows.x misc.forsale rec.autos rec.autos rec.motorcycles rec.motorcycles rec.port.hosebal rec.sport.hockey

alt.atheism sci.space soc.religion.christian talk.religion.misc sci.electronics talk.politics.mideast talk.politics.mise talk.politics.mise

Naive Bayes: 89% classification accuracy

Gaussian Naïve Bayes Sometimes Assume Variance - is independent of Y (i.e., σ_i), - or independent of X_i (i.e., σ_k) - or both (i.e., σ) $P(Y \mid \mathbf{X}) \propto P(\mathbf{X} \mid Y) P(Y)$ $P(X_i = x \mid Y = y_k) = N(\mu_{ik}, \sigma_{ik})$ $N(\mu_{ik}, \sigma_{ik}) = \frac{1}{\sigma_{ik}\sqrt{2\pi}} e^{\frac{-(x-\mu_{ik})^2}{2\sigma_{ik}^2}}$

• Variance:

$$\hat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

Learning Gaussian Parameters

Learning Gaussian Parameters Maximum Likelihood Estimates: • Mean: $\hat{\mu}_{ik} = \frac{1}{\sum_{j} \delta(Y^{j} = y_{k})} \sum_{j} X_{i}^{j} \delta(Y^{j} = y_{k})$ • Variance: $\hat{\sigma}_{MLE}^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \hat{\mu})^{2}$

Maximum Likelihood Estimates: • Mean: $\hat{\mu}_{ik} = \frac{1}{\sum_j \delta(Y^j = y_k)} \sum_j X_i^j \delta(Y^j = y_k)$ • Variance:

What You Need to Know about Naïve Bayes

- Optimal Decision using Bayes Classifier
- Naïve Bayes Classifier
 - What's the assumption
 - Why we use it
 - How do we learn it
- Text Classification
 - Bag of words model
- Gaussian NB
 - Features still conditionally independent
 - Features have Gaussian distribution given class

What's (supervised) learning more formally

• Given:

- $\ \textbf{Dataset} : \mathsf{Instances} \ \{ \! \big\langle \mathbf{x}_1 ; \! \mathbf{t}(\mathbf{x}_1) \! \big\rangle, \! \ldots, \! \big\langle \mathbf{x}_N ; \! \mathbf{t}(\mathbf{x}_N) \! \big\rangle \! \}$
 - e.g., $\langle \mathbf{x}_i; \mathbf{t}(\mathbf{x}_i) \rangle = \langle (GPA=3.9, IQ=120, MLscore=99); 150K \rangle$
- Hypothesis space: H
 - e.g., polynomials of degree 8
- Loss function: measures quality of hypothesis h∈H
- · e.g., squared error for regression

Obtain:

- **Learning algorithm**: obtain h∈H that minimizes loss function
 - e.g., using closed form solution if available
 - Or greedy search if not
 - $\bullet \;$ Want to minimize prediction error, but can only minimize error in dataset

24

Types of (supervised) learning problems,

- Decision Trees, e.g.,
 - dataset: (votes; party)
 - hypothesis space:
 - Loss function:
- NB Classification, e.g.,
 - dataset: (brain image; {verb v. noun})
 - hypothesis space:
 - Loss function:
- Density estimation, e.g.,
 - dataset: (grades)
 - hypothesis space:
 - Loss function:

Learning is (simply) function approximation!

- The general (supervised) learning problem:
 - Given some data (including features), hypothesis space, loss function
 - Learning is no magic!
 - Simply trying to find a function that fits the data
- Regression
- Density estimation
- Classification
- (Not surprisingly) Seemly different problem, very similar

What you need to know about supervised learning

- Learning is function approximation
- What functions are being optimized?

Generative vs. Discriminative Classifiers

- Want to Learn: $h:X \mapsto Y$

 - X features
 Y target classes
- Bayes optimal classifier P(Y | X)
 Generative classifier, e.g., Naïve Bayes:

 Assume some functional form for P(X | Y), P(Y)
- Estimate parameters of P(X|Y), P(Y) directly from training data

- Estimate parameters of P(X|Y), P(Y) directly from training data
 Use Bayes rule to calculate P(Y|X=x)
 This is a 'generative' model
 Indirect computation of P(Y|X) through Bayes rule
 As a result, can also generate a sample of the data, P(X) = ∑_ν P(y) P(X|y)
 Discriminative classifiers, e.g., Logistic Regression:
 Assume some functional form for P(Y|X)

- Estimate parameters of P(Y|X) directly from training data
 This is the 'discriminative' model
 Directly learn P(Y|X)
 But cannot obtain a sample of the data, because P(X) is not available.

Logistic Regression Learn P(Y|X) directly! □ Assume a particular functional form ® Not differentiable...

Logistic Function in n Dimensions $P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}$ Sigmoid applied to a linear function of the data: 0.8 0.6 0.4 0.2

Very convenient!

Features can be discrete or continuous!

$$P(Y = 1 | X = \langle X_1, ... X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$P(Y = 0 | X = < X_1, ... X_n >) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$\frac{P(Y=0|X)}{P(Y=1|X)} = exp(w_0 + \sum_i w_i X_i)$$
 implies
$$\ln \frac{P(Y=0|X)}{P(Y=1|X)} = w_0 + \sum_i w_i X_i$$
 Carlos Guedifin 2005-2009

$$\ln \frac{P(Y=0|X)}{P(Y=1|X)} = w_0 + \sum_{i} w_i X_i$$

Loss functions:

Likelihood vs. Conditional Likelihood

Generative (Naïve Bayes) Loss function: Data likelihood

$$\begin{split} \ln P(\mathcal{D} \mid \mathbf{w}) &= \sum_{j=1}^{N} \ln P(\mathbf{x}^{j}, y^{j} \mid \mathbf{w}) \\ &= \sum_{j=1}^{N} \ln P(y^{j} \mid \mathbf{x}^{j}, \mathbf{w}) + \sum_{j=1}^{N} \ln P(\mathbf{x}^{j} \mid \mathbf{w}) \end{split}$$

- But, discriminative (logistic regression) loss function:

$$\begin{split} & \ln P(\mathcal{D}_Y \mid \mathcal{D}_\mathbf{X}, \mathbf{w}) = \sum_{j=1}^N \ln P(y^j \mid \mathbf{x}^j, \mathbf{w}) \\ & - \text{ Doesn't waste effort learning P(X) – focuses on P(Y|\mathbf{X}) all that matters for classification} \end{split}$$

Expressing Conditional Log Likelihood

$$l(\mathbf{w}) \equiv \sum_{j} \ln P(y^{j}|\mathbf{x}^{j}, \mathbf{w})$$

$$P(Y = 0|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + exp(w_{0} + \sum_{i} w_{i}X_{i})}$$

$$P(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{exp(w_{0} + \sum_{i} w_{i}X_{i})}{exp(w_{0} + \sum_{i} w_{i}X_{i})}$$

$$l(\mathbf{w}) = \sum_{j} y^{j} \ln P(y^{j} = 1 | \mathbf{x}^{j}, \mathbf{w}) + (1 - y^{j}) \ln P(y^{j} = 0 | \mathbf{x}^{j}, \mathbf{w})$$

Maximizing Conditional Log Likelihood

$$\begin{split} l(\mathbf{w}) &= \prod_{j} P(y^{j}|\mathbf{x}^{j}, \mathbf{w}) = \frac{1}{1 + exp(w_{0} + \sum_{i} w_{i}X_{i})} \\ l(\mathbf{w}) &\equiv & \ln \prod_{j} P(y^{j}|\mathbf{x}^{j}, \mathbf{w}) = \frac{exp(w_{0} + \sum_{i} w_{i}X_{i})}{1 + exp(w_{0} + \sum_{i} w_{i}X_{i})} \\ &= & \sum_{j} y^{j}(w_{0} + \sum_{i}^{n} w_{i}x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i}x_{i}^{j})) \end{split}$$

Good news: I(w) is concave function of w! no locally optimal solutions

Bad news: no closed-form solution to maximize I(w)

Good news: concave functions easy to optimize

Optimizing concave function -**Gradient ascent**

Conditional likelihood for Logistic Regression is concave! Find optimum with

$$\text{Gradient:} \quad \nabla_{\mathbf{w}} l(\mathbf{w}) = [\frac{\partial l(\mathbf{w})}{\partial w_0}, \dots, \frac{\partial l(\mathbf{w})}{\partial w_n}]'$$

Update rule: $\Delta \mathbf{w} = \eta \nabla_{\mathbf{w}} l(\mathbf{w})$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial w_i}$$

- Gradient ascent is simplest of optimization approaches
 - e.g., Conjugate gradient ascent much better (see reading)

Maximize Conditional Log Likelihood: Gradient

$$l(\mathbf{w}) = \sum_{i} y^{j}(w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i} x_{i}^{j}))$$

Gradient Descent for LR

Gradient ascent algorithm: iterate until change < ε

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})]$$

For i=1,...,n,
$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})]$$

repeat

That's all M(C)LE. How about MAP?

$$p(\mathbf{w} \mid Y, \mathbf{X}) \propto P(Y \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})$$

- One common approach is to define priors on w
 - Normal distribution, zero mean, identity covariance
 - "Pushes" parameters towards zero
- Corresponds to *Regularization*
 - Helps avoid very large weights and overfitting
 - More on this later in the semester
- MAP estimate

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^{N} P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

M(C)AP as Regularization

$$\ln\left[p(\mathbf{w})\prod_{j=1}^{N}P(y^{j}\mid\mathbf{x}^{j},\mathbf{w})\right] \qquad \qquad p(\mathbf{w})=\prod_{i}\frac{1}{\kappa\sqrt{2\pi}}\ e^{\frac{-w_{i}^{2}}{2\kappa^{2}}}$$

$$p(\mathbf{w}) = \prod_{i} \frac{1}{\kappa \sqrt{2\pi}} e^{\frac{-w_i^2}{2\kappa^2}}$$

Penalizes high weights, also applicable in linear regression

Large parameters → Overfitting

- · If data is linearly separable, weights go to infinity
- Leads to overfitting:
- Penalizing high weights can prevent overfitting...
 - again, more on this later in the semester

Gradient of M(C)AP

$$\frac{\partial}{\partial w_i} \ln \left[p(\mathbf{w}) \prod_{j=1}^N P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right] \qquad \qquad p(\mathbf{w}) = \prod_i \frac{1}{\kappa \sqrt{2\pi}} \ e^{\frac{-w_i^2}{2\kappa^2}}$$

$$p(\mathbf{w}) = \prod_{i} \frac{1}{\kappa \sqrt{2\pi}} e^{\frac{-w_i^2}{2\kappa^2}}$$

MLE vs MAP

Maximum conditional likelihood estimate

$$\begin{split} \mathbf{w}^* &= \arg\max_{\mathbf{w}} \ln \left[\prod_{j=1}^N P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right] \\ w_i^{(t+1)} &\leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \bar{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})] \end{split}$$

Maximum conditional a posteriori estimate

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^{N} P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

$$\boxed{ w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum\limits_{j} x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w})] \right\} }$$

Logistic regression v. Naïve Bayes

- Consider learning f: X → Y, where
 - X is a vector of real-valued features, < X1 ... Xn >
 - Y is boolean
- Could use a Gaussian Naïve Bayes classifier
 - assume all X_i are conditionally independent given Y
 - model $P(X_i \mid Y = y_k)$ as Gaussian $N(\mu_{ik}, \sigma_i)$
 - model P(Y) as Bernoulli(θ ,1- θ)
- What does that imply about the form of P(Y|X)?

$$P(Y = 1|X = \langle X_1, ...X_n \rangle) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

Cool!!!!

Derive form for P(Y|X) for continuous X_i

$$\begin{split} P(Y=1|X) &= \frac{P(Y=1)P(X|Y=1)}{P(Y=1)P(X|Y=1) + P(Y=0)P(X|Y=0)} \\ &= \frac{1}{1 + \frac{P(Y=0)P(X|Y=0)}{P(Y=1)P(X|Y=1)}} \\ &= \frac{1}{1 + \exp(\ln\frac{P(Y=0)P(X|Y=0)}{P(Y=1)P(X|Y=1)})} \\ &= \frac{1}{1 + \exp(\ln\frac{1-\theta}{\theta}) + \sum_i \ln\frac{P(X_i|Y=0)}{P(X_i|Y=1)})} \end{split}$$

©Carlos Guestrin 2005-2009

Ratio of class-conditional probabilities

$$\ln \frac{P(X_i|Y=0)}{P(X_i|Y=1)}$$

$$P(X_i = x \mid Y = y_k) = \frac{1}{\sigma_i \sqrt{2\pi}} e^{\frac{-(x - \mu_{jk})^2}{2\sigma_i^2}}$$

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}$$

Derive form for P(Y|X) for continuous X_i

 $P(Y = 1|X) = \frac{P(Y = 1)P(X|Y = 1)}{P(Y = 1)P(X|Y = 1) + P(Y = 0)P(X|Y = 0)}$

 $= \frac{1}{1 + \exp(\left(\ln\frac{1-\theta}{\theta}\right) + \sum_{i} \ln\frac{P(X_i|Y=0)}{P(X_i|Y=1)})}$

Gaussian Naïve Bayes v. Logistic Regression

Set of Gaussian Naïve Bayes parameters (feature variance independent of class label) Set of Logistic Regression parameters

- Representation equivalence
- But only in a special case!!! (GNB with class-independent variances)
- But what's the difference???
- LR makes no assumptions about P(X|Y) in learning!!!
- Loss function!!!
 - Optimize different functions ! Obtain different solutions

@Carlos Guattin 2005-200

Naïve Bayes vs Logistic Regression

Consider Y boolean, X_i continuous, X=<X₁ ... X_n>

Number of parameters:

- NR: 4n +1
- LR: n+1

Estimation method:

- NB parameter estimates are uncoupled
- LR parameter estimates are coupled

Carlos Guartin 2005, 200

G. Naïve Bayes vs. Logistic Regression 1

[Ng & Jordan, 2002]

- Generative and Discriminative classifiers
- Asymptotic comparison (# training examples → infinity)
 - when model correct
 - GNB, LR produce identical classifiers
 - when model incorrect
 - LR is less biased does not assume conditional independence
 - therefore LR expected to outperform GNB

©Carlos Guastrio 2005-2009

G. Naïve Bayes vs. Logistic Regression 2

[Ng & Jordan, 2002]

- Generative and Discriminative classifiers
- Non-asymptotic analysis
 - convergence rate of parameter estimates, n = # of attributes in X
 - Size of training data to get close to infinite data solution
 - GNB needs O(log n) samples
 - LR needs O(n) samples
 - GNB converges more quickly to its (perhaps less helpful) asymptotic estimates

©Carlos Guestrin 2005-2009

What you should know about Logistic Regression (LR)

- Gaussian Naïve Bayes with class-independent variances representationally equivalent to LR
- Solution differs because of objective (loss) function
- In general, NB and LR make different assumptions
- NB: Features independent given class! assumption on P(X|Y)
- LR: Functional form of P(Y|X), no assumption on P(X|Y)
- LR is a linear classifier
- decision rule is a hyperplane
- LR optimized by conditional likelihood
- no closed-form solution
- concave ! global optimum with gradient ascent
- Maximum conditional a posteriori corresponds to regularization
- Convergence rates
 - GNB (usually) needs less data
 - LR (usually) gets to better solutions in the limit

©Carlos Guestrin 2005-2009