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Naive Bayes The Distributions We Love
Discrete Continuous
* Naive Bayes assumption:
— Features are independent given class: Binary {0, 1} k Values
P(X1,X2|Y) = P(X1]X2,Y)P(X2]Y) _
= P(X1]Y)P(Xo|Y) Single Bernouilli
. Event
— More generally:
P(D | 0) = 0°1(1 — 0)°1
P(X1.. XnlY) = HP(Xi|Y Squence Binomial Multinomial
i (N trials)
N= oy +or

* How many parameters now? ) v
* Suppose X is composed of n binary features Conjugate Beta DII’ICh|e'[
Prior




NB with Bag of Words for Text Classification

* Learning phase:
— Prior P(Y,)
¢ Count how many documents from topic m / total # docs
- P(X|Y,)
* Let B,, be a bag of words formed from all the docs in topic m
* Let #(i, B) be the number of times word i is in bag B
e P(X; | Yy) = (#(i, B,,)+1) / (W+2j#(j, B.))  where W=#unique words
e Test phase:
— For each document
¢ Use naive Bayes decision rule

LengthDoc
hyp(x) = arg manP(y) II PGy

i=1

Easy to Implement

* But...

e If you do... it probably won’t work...

Probabilities: Important Detail!

* P(spam | X; ... X,) = H P(spam | X))
Any more potential problems here?
= We are multiplying lots of small numbers

Danger of underflow!
= 0.5%=7E-18

= Solution? Use logs and add!
"p,*p,=e log(p1)+log(p2)

= Always keep in log form

Naive Bayes Posterior Probabilities

e Classification results of naive Bayes
— l.e. the class with maximum posterior probability...
— Usually fairly accurate (?1?1?)

¢ However, due to the inadequacy of the
conditional independence assumption...
— Actual posterior-probability estimates not accurate.
— Output probabilities generally very close to 0 or 1.

Twenty News Groups results

Given 1000 training documents from each group
Learn to classify new documents according to
which newsgroup it came from

comp.graphics mise.forsale
COmMp.os.ms- windows. mise rec.antos
comp.sys.ibm,pe hardware  rec.motorcyeles
comp.sys.mac.hardware  rec.sport.baseball

comp.windows.x rec.sport. hockey
alt.atheism selspace
soc religion.christian vpt
talk.religion.misc seielectronics
talk.politics. mideast scimed
talk.poli 1ise

talk. politics. guns

Naive Bayes: 80% classification accuracy

Learning curve for Twenty News Groups
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Accuracy vs. Training set size (1/3 withheld for test)




Bayesian Learning
What if Features are Continuous?

Eg., Character Recognition: " Prior
X;is ith pixel H m

Posterior ‘l'

i:m —> P(Y | X) o« P(X|Y) P(Y)

T

Data Likelihood

Bayesian Learning
What if Features are Continuous?

Eg., Character Recognition:
X;is ith pixel H

P(Y | X) e P(X|Y) P(Y)
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Gaussian Naive Bayes

Sometimes Assume Variance
— isindependent of Y (i.e., 5;),
— orindependent of X, (i.e., ;)
— or both (i.e., o)

P(Y | X) < P(X|Y) P(Y)

P(X; =x] Y=y,) = N(uy, o)
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Learning Gaussian Parameters

Maximum Likelihood Estimates:
* Mean:

Ly
BMLE = =) T
N3
e Variance:
2 1Y 2
OMLE = NZ(%’*/?)
i=1

Learning Gaussian Parameters

Maximum Likelihood Estimates:

¢ Mean: jih training
example
1

fiik = oo S X1V =)
" zja(w=yk)§ ' g

S8(x)=1 if x true,

¢ Variance:

else 0
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Learning Gaussian Parameters

Maximum Likelihood Estimates:

* Mean:

1 N .
ik = o > XJ6(Y7 =)
‘ Yjo(YI =y) ; !
e Variance:
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Fh= o (X )26 = )
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Example: GNB for classifying mental states

[Mitchell et al.]

| I

~1 mm resolution

~2 images per sec.
15,000 voxels/image

non-invasive, safe

measures Blood
Oxygen Level
Dependent (BOLD) Typical
response impulse
response

Gaussian Naive Bayes: Learned L gel word

P(BrainActivity | WordCategory = {People,Animal})
[Mitchell et al.]

What You Need to Know about
Naive Bayes
¢ Optimal Decision using Bayes Classifier
* Naive Bayes Classifier
— What'’s the assumption

— Why we use it
— How do we learn it

Text Classification
— Bag of words model
¢ Gaussian NB
— Features still conditionally independent
— Features have Gaussian distribution given class

Brain scans can
track activation
with precision
and sensitivity

Mitchell et al.

Gaussian Naive Bayes: Learned L, o,e word
P(BrainActivity | WordCategory = {People,Animal})

. . . ) [Mitchell et al.]]
Pairwise classification accuracy: 85%

People words %"= Animal words

What's (supervised) learning

) more formally
* Given:

— Dataset: Instances {(x;;t(X,)),..., (Xy;t(xy))}
 e.g, (x;t(x;)) = ((GPA=3.9,1Q=120,MLscore=99);150K)
— Hypothesis space: H
¢ e.g., polynomials of degree 8
— Loss function: measures quality of hypothesis he H
* e.g., squared error for regression
e Obtain:

— Learning algorithm: obtain heH that minimizes loss function
* e.g., using closed form solution if available
« Or greedy search if not

« Want to minimize prediction error, but can only minimize error in dataset

24




Types of (supervised) learning problems, Learning is (simply) function

revisited approximation!
¢ Decision Trees, e.g., ¢ The general (supervised) learning problem:
— dataset: (votes; party) — Given some data (including features), hypothesis space, loss function
— hypothesis space: — Learning is no magic!
— Loss function: — Simply trying to find a function that fits the data
* NB Classification, e.g., * Regression
— dataset: (brain image; {verb v. noun})
— hypothesis space: .

N Density estimation
— Loss function:

« Density estimation, e.g., * Classification

— dataset: (grades)

— hypothesis space: ¢ (Not surprisingly) Seemly different problem, very similar
— Loss function: solutions...
What you need to know about Generative vs. Discriminative
supervised learning Classifiers

¢ Wantto Learn: h:X—> Y
— X-—features
— Y -—target classes
* Bayes optimal classifier — P(Y|X)
. . L. * Generative classifier, e.g., Naive Bayes:
e What functions are being optimized? — Assume some functional form for P(X|Y), P(¥)
— Estimate parameters of P(X|Y), P(Y) directly from training data
— Use Bayes rule to calculate P(Y|X= x)
— This s a ‘generative’ model
« Indirect computation of P(Y|X) through Bayes rule
* Asaresult, can also generate a sample of the data, P(X) = X, P(y) P(X|y)
* Discriminative classifiers, e.g., Logistic Regression:
— Assume some functional form for P(Y|X)
— Estimate parameters of P(Y|X) directly from training data
— This is the ‘discriminative’ model
+ Directly learn P(Y|X)
* But cannot obtain a sample of the data, because P(X) is not available

e Learning is function approximation

Logistic Regression Logistic Regression
Learn P(Y|X) directly! Learn P(Y|X) directly!
O Assume a particular functional form O Assume a particular functional form 1
® Not differentiable... O Logistic Function 1+ exp(—2)
0 Aka Sigmoid
. -. . . P(Y)Zb:+ . .. . . +:+*
. P.(Y‘):l : +++ . ) . + : +*+




Logistic Function in n Dimensions

1

PY =1|X) =
( 1 1+ exp(wo + X1 w;X;)

Sigmoid applied to a linear function of the data:

Features can be discrete or continuous!

Understanding Sigmoids

1
oo+ T = oy

o8-
07
06

Wo=-2, Wy=-1

w,=0, w,=-1 Wy=0, w;=-0.5

Very convenient!

1

P(Y = 1|X =< X1,..Xn >) =
( | ! n>) 1+ exp(wo + 3; w; X;)

implies

_ _ _exp(wo + X wiX;)
PO =0IX =<X1,..Xn >) = 7 + exp(wo + ¥ wi X;)

implies
P(Y = 0|X)
o = eap(wo + Y wiX;)
P(Y = 1]X) XL: o linear
classification
implies rule!
P(Y =0|X)
—P(Y —1%) wo + sz i
Carlos Guedtfin 20

Loss functions:
Likelihood vs. Conditional Likelihood

* Generative (Naive Bayes) Loss function:
Data likelihood
N
npPe(w) = 3 InP g | w)
FL )
N N
= Y Pl Wi+ 5 P | w)
i=1 =1
* Discriminative models cannot compute P(x'|w)!
* But, discriminative (logistic regression) loss function:
Conditional Data Likelihood

N
InP(Dy | Dx,w) =} InP(y’ | x7,w)

j=1
— Doesn’t waste effort learning P(X) — focuses on P(Y|X) all that matters for classification

Expressing Conditional Log Likelihood

1(w) = X In Py, w) A E T
J

PY = 1X,w) = —
i w= i

(w) = Y@ InP(y/ =1x7,w) + (1 — ) In P(y/ = 0[x7, w)
7

Carlos Guestrin 2005-2009

Maximizing Conditional Log Likelihood

Y =0X, W)= i

+ erplg + T

. . MY =1 X,W)=
I(w) = InJ[PW =, w)
J

J

= 2o/ (wo+ Y wir)) = In(L + eap(wo + 3 wiz)))

Good news: I(w) is concave function of w ! no locally optimal
solutions

Bad news: no closed-form solution to maximize I(w)

Good news: concave functions easy to optimize




Optimizing concave function —
Gradient ascent

« Conditional likelihood for Logistic Regression is concave ! Find optimum with
gradient ascent

Gradient:  Vwl(w) =

yeeey

ol(w) 8l(w)],
17

12} Wn,

Learning rate, n>0

Update rule: Aw = nvwl(w)
t+1 t oU(w
D 0 4,22
i
¢ Gradient ascent is simplest of optimization approaches
— e.g., Conjugate gradient ascent much better (see reading)

Carlos Guesifin 2005-2(

Maximize Conditional Log Likelihood: Gradient
ascent

Iw) = Y ui(wo+ Y wiad) - In(1+ exp(uwo + 3 wiad))

Carlos Guestrin 2005-2008

Gradient Descent for LR

Gradient ascent algorithm: iterate until change < ¢

wi — +a)ly - PO =1]x,w)]
J

Fori=1,...,n,
w3 ally? - PO =11, w)]
i
repeat
Carlos Gus ‘\l\" in 2005-2009

That’s all M(C)LE. How about MAP?
p(w|Y,X) o P(Y X, w)p(w)

¢ One common approach is to define priors on w
— Normal distribution, zero mean, identity covariance
— “Pushes” parameters towards zero

¢ Corresponds to Regularization
— Helps avoid very large weights and overfitting
— More on this later in the semester

¢ MAP estimate

N
* — J | xJ
w* = argmaxin |p(w) ’H1 Py | x7,w)
=

M(C)AP as Regularization

N 2
In |p(w) T[T PG | x‘ij)] (W) = LI
[ j=1 ! lel w2m

Penalizes high weights, also applicable in linear regression

Uestrin 200!

Large parameters — Overfitting
=

1 _ o
14e= 14e 2= 14 e 100«

¢ If datais linearly separable, weights go to infinity
¢ Leads to overfitting:

¢ Penalizing high weights can prevent overfitting...
— again, more on this later in thngemester

Carlos Guesirin 2005-2009




Gradient of M(C)AP

w?
%

1
Ow; = plw) = 11[ o

P N S
2in [pew) I P(yuxf,w)]

- a4
Carlos Guesirin 2005-2009

Logistic regression v. Naive Bayes

* Consider learning f: X 2 Y, where
— Xis a vector of real-valued features, < X1 ... Xn >
— Yis boolean
e Could use a Gaussian Naive Bayes classifier
— assume all X, are conditionally independent given Y
— model P(X; | Y =y,) as Gaussian N(y,c;)
— model P(Y) as Bernoulli(6,1-0)

e What does that imply about the form of P(Y|X)?
P(Y =1|X =< Xq,..Xp >) = !

Coolll!

1+ exp(wo + X; wi X;)

Carlos Gue&ifin 2005-2009

MLE vs MAP

P Maximum conditional likelihood estimate

N
w* = arg mv:vgxln [Hl Py | xJ’w)]
j=

wi(t-H) — wi(t) _i_nzz{[yj —P(Yi=1|xI,w)]
J

P Maximum conditional a posteriori estimate
N
* _ J | xJ
w* = argmaxin [p(w) ’H1 Py | x: ,w)}
1=

wi(H'l) — wi(t)—}—n {—)\wgt) + zgfiy] —-P(YI=1|x,w)]

Derive form for P(Y|X) for continuous X;

Y — oo P(Y =1)P(X|Y =1)
PIY =110 = 5 = h v = 1) & PO = 0) PNV =0)

1

P(Y=0)P(X|Y=0)
1 4 exp(in ;-(1-=1”.(_\-|~,-=1))

1+ exp( (In15%) 4[5, In BT=0))

iIn pixiv=1)

Carlos Guestrin 2005-2009

Ratio of class-conditional probabilities

P(X;lY = 0) 1 (g
PIXY =1) PXi=z|Y=u)=——0 ¢

Carlos Guestrin 200!

Derive form for P(Y|X) for continuous X;
MV 1YY — P(Y=1)P(X|Y =1)

PY =11X) = o Y = D & P(Y = 0)FCX[Y =0)
1

= 1+ exnt ('"1n”)+i;ln ;:(..I -

3 (f"ﬁ Ty 4 wh -k
-\ 2 N o

1+ exp(wo —+ Z;”:l"wixi)




Gaussian Naive Bayes v. Logistic Regression

Set of Gaussian Set of Logistic
Naive Bayes parameters Regression parameters
(feature variance
independent of class label)

Representation equivalence
— Butonly in a special case!!! (GNB with class-independent variances)
But what’s the difference???

LR makes no assumptions about P(X|Y) in learning!!!

Loss function!!!
— Optimize different functions ! Obtain different solutions

Carlos GuesHhir

Naive Bayes vs Logistic Regression

Consider Y boolean, X; continuous, X=<X, ... X,>

Number of parameters:
e NB:4n+1
¢ LR:n+l

Estimation method:
* NB parameter estimates are uncoupled
* LR parameter estimates are coupled

Carlos Gu 2005-2009

G. Naive Bayes vs. Logistic Regression 1
[Ng & Jordan, 2002]
* Generative and Discriminative classifiers

e Asymptotic comparison (# training examples >
infinity)
— when model correct
¢ GNB, LR produce identical classifiers

— when model incorrect

¢ LRis less biased — does not assume conditional independence
— therefore LR expected to outperform GNB

Carlos Guesffin 2005-2009

G. Naive Bayes vs. Logistic Regression 2

[Ng & Jordan, 2002]
¢ Generative and Discriminative classifiers

¢ Non-asymptotic analysis
— convergence rate of para meter estimates, n = # of attributes in X
« Size of training data to get close to infinite data solution
* GNB needs O(log n) samples
¢ LR needs O(n) samples

— GNB converges more quickly to its (perhaps less helpful
asymptotic estimates

2005-2009

— Naive bayes
...... Logistic Regression

Some
experiments
from UCI data B | T
sets B re T e — ¥
Carlos Guestrin 2005-2009 ot on dasases o U UCT Machine Looeig
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What you should know about Logistic
Regression (LR)

¢ Gaussian Naive Bayes with class-independent variances
representationally equivalent to LR
— Solution differs because of objective (loss) function
¢ Ingeneral, NB and LR make different assumptions
— NB: Features independent given class ! assumption on P(X|Y)
— LR: Functional form of P(Y|X), no assumption on P(X|Y)
¢ LRis alinear classifier
— decision rule is a hyperplane
* LR optimized by conditional likelihood
— no closed-form solution
— concave ! global optimum with gradient ascent
— Maximum conditional a posteriori corresponds to regularization
¢ Convergence rates
— GNB (usually) needs less data
— LR (usually) gets to better solutions in the limit

Carlos Guesifin 2005-2009




