
1

12/1/97 Q-1

© 1997 UW CSE

File Storage and Indexing

Chapters 4 and 5

12/1/97 Q-2

DBs Reside on Disks

• Main reasons: (main) memory is too small
and too volatile

• Understanding disk operation and
performance is important

• Data structures and algorithms for disk are
very different from those appropriate for
memory

• The single most important fact about disks,
relative to memory, is… (we shall see)

12/1/97 Q-3

Review: Disk Organization

• Spinning magnetic surfaces, stacked

• R/W head per surface

• Track: circular path
– Cylinder: vertical stack of tracks

• Sectors: fixed length physical blocks along
track
– separated by gaps

– overhead info (ID, error-correction, etc.)

– each sector has a hardware address
12/1/97 Q-4

Disks and OS

• OS manages disks

• Files are allocated in blocks (groups of
sectors)
– units may be scattered on disk

– OS makes file look contiguous

– no simple map between logical records
(program/file view) and physical placement

12/1/97 Q-5

Program Viewpoint
• Files are collections of logical "records"

– records are commonly (but not always) fixed in
size and format

– fields in records are commonly (but not always)
fixed in size and format

• Sequential access: program gets data one
record at a time

• Random access: program can ask for a
record by its relative block # (not disk
address!)

12/1/97 Q-6

Common Modes of Record
Processing

• Single record (random)
…WHERE SSN=345667899

• Multiple records (no special order)
SELECT * FROM DEPT...

• Multiple records (in order)
…ORDER BY SSN

An efficient storage scheme should support all
of these modes

2

12/1/97 Q-7

Naïve Relational View

• Each table is a separate file
– All rows in a table are of fixed size and format

– Rows are stored in order by primary key

12/2/97 Q-8

What’s the Big Deal?
(actual numbers will vary)

• CPU speed: 100-500MHz

• Memory access speed: (100ns)
how many CPU cycles is this?

• Disk speed has three components
– Seek time: to position the W/R head (10ms)

how many memory cycles is this?

– Latency: rotational speed (3600rpm)

– Transfer time: movement of data to/from
memory (5Mb/sec)

12/1/97 Q-9

Fact of Life

Seek time outweighs all other time
factors

Implication: Martin’s three rules for efficient
file access:
– 1. Avoid seeks

– 2. Avoid seeks

– 3. Avoid seeks

• Corollary: Any technique that takes more
than one seek to locate a record is
unsatisfactory.

12/1/97 Q-10

Memory vs Disk Data Structures

• Example: Binary Search of a sorted array
– Needs O(Log2N) operations

• How many passes if 1,000,000 integers in
memory?
– The answer (20) is acceptable

• How many seeks if 1,000,000 records on
disk?
– The answer (20) in unacceptable

– And how did they get sorted (NlogN at best)?

12/1/97 Q-11

Avoiding Seeks

• Overlapping disk operations
– double buffering

• Disk cache
– locality principle: recently used pages are likely

to be needed again

– maintained by OS or DBMS

• Sequential access
– Seek needed only for first record

• Smart file organizations
12/1/97 Q-12

A Smart File Organization...

• One which needs very few seeks to locate
any record

• Hashing: go directly to the desired record,
based on a simple calculation

• Indexing: go directly to the desired record,
based on a simple look-up

3

12/1/97 Q-13

Review: Hashing

• Main idea: address of record is calculated
from some value in the record
– usually based on primary key

• Zillions of possible hash functions
– Hard to find a good hash function

12/1/97 Q-14

Pitfalls of Hashing

• Conflicts: more than one record hashing to
the same address.

• schemes to overcome conflicts: overflow areas;
chained records, etc.

• all involve more disk I/O

• Wasted space

• No efficient access for other than primary
key

• No efficient way for sequential, especially
sorted traversal

12/1/97 Q-15

Index

• Main idea: A separate data structure used
to locate records

• Frequently, index is a list of key/address
pairs

• If index is small, a copy can be maintained
in memory!
– Permanent disk copy is still needed

• Many, many flavors of index organization

12/1/97 Q-16

Some Indexing Terminology

• Index field (key)

• Primary index

• Secondary index

• Dense index

• Non-dense (sparse) index

• Clustering index

12/1/97 Q-17

Indexing Pitfalls

• Each index takes space

• Index file itself must permit efficient
reorganization

• Large indices won't fit in memory
– May require multiple seeks to locate record

entry

• Solution to some problems: Multilevel
indexing
– each level is an index to the next level down

12/1/97 Q-18

Requirements on Multilevel
Indexes

• Must have low height

• Must be efficiently updatable

• Must be storage-efficient

• Top level(s) should fit in memory

• Should support efficient sequential access,
if possible

4

12/1/97 Q-19

B-Tree

• B-Tree is a type of multilevel index
– from another standpoint: it's a type of balanced

tree

• Invented in 1972 by Boeing engineers R.
Bayer and E. McCreight

• By 1979: "the standard organization for
indexes in a database system" (Comer)

12/1/97 Q-20

B-Tree Overview

• Assume for now that keys are fixed-length
and unique

A B-tree can be thought of as a generalized
binary search tree
– multiple branches rather than just L or R

• Some wasted space in the nodes is tolerated

• Trees are always perfectly balanced

12/1/97 Q-21

B-Tree Concepts

• Each node contains
– tree (node) pointers, and

– key values (and record pointers)

• Order p means (up to) p tree pointers, (up
to) p-1 keys

• Given a key K and the two node pointers L
and R around it
– All key values pointed to by L are < K

– All key values pointed to by R are > K
12/1/97 Q-22

B-Tree Growth and Change

When a node is full, it splits.
– middle value is propagated upward

– two new nodes are at same level as original
node

• Height of tree increases only when the root
splits

• Recommended: split only on the way down

• On deletion: two adjacent nodes recombine
if both are < half full

12/1/97 Q-23

B+ Tree

• Like B-Tree, except
– record pointers are only in the leaves

• left-side pointer has keys <= rather than <

– leaf nodes are linked together left to right

• Allows sequential access of entire file!
– "indexed sequential"

• Interior nodes have higher order than leaf
nodes
– Fewer non-leaf levels than B-Tree

12/1/97 Q-24

Variations

• Could store the whole record in the index
block
– especially if records are few and small

– in a B+ tree, this would make sequential access
especially efficient

• Could redistribute records between adjacent
blocks
– esp. on deletion (B* tree)

• Variable order: accommodate varying key
lengths

5

12/1/97 Q-25

Other Forms of Indexing

• Bitmap indexes
– One index per value (property) of interest

– One bit per record

– TRUE if record has a particular property

• Indexed hash: hash function takes you to an
entry in an index
– allows physical record locations to change

• Clever indexing schemes are useful in
optimizing complex queries

