
1

12/1/97 P-1

Object-Oriented Databases

Chapter 22

12/1/97 P-2

Limitations of the
Relational Model

• limited constraints expressible

• limited types of relationships

• normalization leads to atomization,
inefficiency

• Limited built-in datatypes
– No support for multimedia types: images,

video, sound, designs, texts, etc.

– BLOBs (binary large objects) are one
workaround

12/1/97 P-3

Language Fit

• COBOL and DB grew up together
– COBOL pioneered the "record" construct

– character-based types

• Poor fit to today's languages like C++

12/1/97 P-4

Versioning

• In some applications, old versions of data
must be accessible
– designs (architecture, CAD, etc.)

– documents

– multimodule systems

• Often are complex relationships between
versions

• Not necessarily an OO concept.

12/1/97 P-5

A Look Back

• Before we look ahead...

• Hierarchical and Network (CODASYL)
models were popular before relational
– Network had extremely rich semantics

– Complex relationships directly expressed (no
joins)

– Primarily "navigational"
• Custom programs locate data via knowledge of

schema, following pointers

• No standardized query languages
12/1/97 P-6

Object-Oriented Trends

• Trends in OO Programming seem
promising for databases
– Rich, user-defined data types (support of new

media, lift 1NF restriction)

– Inheritance (important type of relationship)

– Encapsulation of data and functions

– Increasing emphasis on components and
reusability; cross-platform

– Tighter integration with C++

2

12/1/97 P-7

Review of OO Programming
Concepts

• Class: description of data structure and
operations (i.e. a data type)
– encapsulation: data and ops are wrapped

together; only an interface is externally visible.

• Object: an instance of a class

• Class B inherits from class A: B has all the
properties of A, plus some new or altered
properties (data/functions)

12/1/97 P-8

Strict OO Viewpoint
• Where possible: model the behavior and

relationships of the real world

• Everything is an object

• Objects communicate only by passing
messages
– In practice, a message is a function name plus a

set of arguments

• Types can be determined at run-time

• Smalltalk is the model: untyped;
interpreted; interactive

12/1/97 P-9

Hybrids and Compromises

• Example: C++
– retains all features of non-OO C language, adds

classes, inheritance, polymorphism

• OODBs tend to be compromises
– May retain relational facilities: ORDBMS

– Add OO features such as: user-defined types &
classes, inheritance, etc.

– Add features like "persistence" and versioning

– SQL3 will have OO features
12/1/97 P-10

OIDs

• Object Identifiers (OID)

• Unique (database-wide) identifier for each
object
– independent of key

• One object can reference another via OID
– Allows complex embedding

12/1/97 P-11

Challenges for Query Languages

• DDL: coordinating PL with QL

• Encapsulation issues
– how much is visible?

– must all operations be predefined?

• Multimedia
– what does "query" mean?

– how to display results?

12/1/97 P-12

Persistence

• The idea: it's easy for a program to work with
a complex data structure in memory, but hard
to flatten it into a file. It would be convenient
if some variables were persistent, i.e., could
exist on disk between executions of the
program, i.e., be part of the DB.

• Not strictly on OO concept

• One challenge: mapping OIDs between in-
memory pointers and disk addresses
– "pointer swizzling"

3

12/1/97 P-13

Deductive Databases

• Another (non-OO) approach to relieving
relational limitations

• DB viewed as a set of facts and rules
– a row can be viewed as a fact which satisfies a

predicate

• Logic-based languages
– Datalog: DB extension of Prolog

• Excellent at expressing complex constraints,
making deductions and discoveries, etc.

