
1

11/12/97 M-1

Schedules and Serializability

17.4-17.5

11/12/97 M-2

Schedules

• A "schedule" is the abstraction of the
activity of simultaneous transactions.

• Everything is stripped away except:
– transaction identifiers (as subscripts)

– DB READs and WRITEs and the data they
operate on

– COMMITs and ABORTs

– The order of these operations

11/12/97 M-3

Schedule Notation

• Sa A schedule of one or more transactions

• Ti A transaction.

• ri(X) Transaction Ti performs a READ
of data item X.

• wi(X) Transaction Ti performs a WRITE
of data item X.

• ai Transaction i aborts.

• ci Transaction i commits.
11/12/97 M-4

Serial Schedules

• If T i does not overlap Tj, ACID behavior is
assured.
– Notation: Ti;Tj means Ti executes fully, then Tj

executes

– Called a "serial" schedule

• T1;T2;T3 and T2;T3;T1 might have different
results, but either is acceptable.

11/12/97 M-5

Serializable Schedules

• Serial schedules, though safe, are
unacceptably costly
– Transactions are I/O-bound (most elapsed time

is spent waiting for I/O)

• Non-serial (overlapped) schedules allow
shorter turn-around and better resource
utilization

• A serializable schedule is one which is
equivalent to some serial schedule

11/12/97 M-6

Schedules and Serializability
Theory

• Schedules are a major tool in studying
concurrent processing of transactions

• Goals:
– be able to recognize when a schedule is

serializable

and/or:

– be able to force schedules to be serializable

and/or

– be able to recognize when a schedule is
recoverable if an abort occurs



2

11/12/97 M-7

Conflicts

• A conflict occurs when one transaction in a
schedule WRITEs a data item which
another transaction also uses (READs or
WRITEs)
– Note: no order requirement in this definition

– The two operations are said to conflict

– The two Ts are also said to conflict

– A conflict per se is not a show-stopper

11/12/97 M-8

Recoverability

• The TP monitor must have the power to
undo or "rollback" the effect of a
transaction.
– Example: if a transaction aborts after doing

some WRITE

• If one transaction in a schedule aborts, it
may be necessary to abort and rollback
others.
– committed transactions should never be rolled

back

11/12/97 M-9

Recoverable Schedules

• Ti reads from Tj (with respect to a schedule)
if T i READs some item which had
previously been WRITten by Tj.

• A schedule is recoverable if no transaction
in it COMMITs until all transactions that it
READs from have COMMITted.

• Stronger: in a strict schedule, a transaction
cannot even read or write X until the last
transaction which wrote X has
COMMITted. 11/12/97 M-10

Recognizing Serializability

• In general, difficult or impossible
– depends on the semantics of the transactions

• Some forms of serializability can be
detected

• Two schedules are conflict equivalent if the
order of any two conflicting operations is
the same in both schedules.

11/12/97 M-11

Conflict Serializability

• A schedule is conflict serializable if there is
some serial schedule with which it is
conflict equivalent.

• Turns out there's a simple algorithm to test
for conflict serializability!
– Make a digraph ("precedence graph") of the T's

– Directed edges mark conflicts

Theorem: schedule is conflict serializable iff
graph has no cycles.

11/12/97 M-12

Granularity Issues

• Granularity refers to the size of the data
being read or written
– whole DB; table; row; one attribute value, etc.

• Smaller granularity means more
concurrency, but more overhead

• DBMSs differ in granularity supported

• Transaction semantics may determine
needed granularity



3

11/12/97 M-13

Not the Final Word

• There are schedules which are not conflict
serializable, but still serializable
– "View serializability" is another definition;

harder to check but allows more cases

• There are even schedules which are not
serializable but nevertheless safe

• Serializability is a tool for analysis, not a
prescription.


