
1

10/12/97 F-1

The Relational Algebra

Textbook ch. 6.5-6.7

© 1997 UW CSE
10/12/97 F-2

Overview
• Operations on whole relations

– Inputs are sets, output is a set

• Can nest arbitrarily complex expressions

• SELECT σ, PROJECT Π
• Set union ∪, intersection ∩, difference −,

on compatible relations

• Cartesian product ⊗ and various flavors of
JOIN
– Division ÷ sort of inverse of product

• Aggregate functions (unofficial)

10/12/97 F-3

Select
• Unary operation

• Select a subset of tuples from a relation,
based upon a condition
– use AND, OR, NOT for compound conditions

• Result: a table with same attributes as
original: a proper subset
– may be given a name (temporary)

• Notation:

σcondition(relationname) 10/12/97 F-4

Project

• Unary operation

• Select a subset of columns

• Result: a table with same number of rows as
original
– not actually a subset of the original (unlike σ)

– may be given a name (temporary)

• Notation:

Πcol-list(relationname)

10/12/97 F-5

Join

• A binary operation on relations

• Result is a whole relation

• General description: a ⊗ followed by a σ.
– The σ condition equates or otherwise relates

common attributes between the two relations

– Often a superfluous common attribute is
removed

• Notation (these slides):
R1JN join-condition R2

10/12/97 F-6

"Equi" and "Natural" join

• Common attributes are compared for
equality
– no need to specify a join condition

– could join on more than one attribute

– need to list attributes if names are not the same

• "Natural join": Superfluous columns are
removed automatically

• Notation (our text): R1 * attr-lists R2

2

10/12/97 F-7

Division: R1 ÷ R2

• Sort of the reverse of Cartesian product

• Like integer division in that any
"remainder" is discarded

• Main idea: find all the tuples in R1 which
are joined to all the values in R2
– the R2 attributes are discarded

• Same thing can be accomplished with
combination of Π, ⊗, −

10/12/97 F-8

Division Details of R = R1÷R2

• R1 (dividend): attribute set X ∪ Y, |R1|
rows

• R2 (divisor): attribute set Y, |R2| rows

• R (quotient):
– attribute set X, i.e., the attributes of R1 not in

R2

– at most |R1|/|R2| rows

– A row is in the answer (R) if that row (X
attributes) occurs in R1 with each combination
of the rows (Y attributes) of R2.

10/12/97 F-9

Division Examples

• Who would have lots to talk about with
Bessie? "Find (all) customers who have
rented (all) the same movies as Bessie has."

• What airlines compete with Horizon Air?
"Find the airlines which serve a city also
served by Horizon" (not a division query).

• Which airline is best positioned to put
Horizon Air out of business? "Find the
airlines which fly to (all) the cities served
by Horizon" (a division query). 10/12/97 F-10

Aggregate Functions

• Technically, not part of R.A.

• Actual query languages will implement
many of these

• (Usually) unary operators, take a whole
relation and compute a value

• COUNT, AVERAGE, MAX, MIN

• Result is returned as a relation with one row
and one column
– i.e., not as a scalar number

10/12/97 F-11

Grouping and Aggregates

• Rows may be grouped based on attribute
values
– Think of it as a sort on those attributes

• Aggregate functions can be applied to the
grouped relation
– Computes a value for each group

• Result returned as a relation with one row
for each group, one column for each
aggregate function

10/12/97 F-12

Grouping Notation and Example

• <grouping attributes> ℑ <agg. function list> (relation)

• "List number of employees and average
salary for each department"

DNAME COUNT (SSN) AVERAGE
(SALARY)

SW Support 54 $30,301

HW Support 18 $72,600

Grounds 5 $89,600

3

10/12/97 F-13

Looking Ahead

• Order of operations affects efficiency

• Example: σ(R1) *σ(R2) probably much
faster than σ(R1 * R2)

• Large joins can be particularly taxing

• Ideally, we do not let this affect how we
write queries!

• Smart DBMSs do "query optimization"
– automatically reorder operations for efficiency

