Data Modeling Concepts

© 1997 UW CSE

Data Models

- ✓ Model: "set of concepts to describe the structure of a DB"
- ✓ High-level: close to the way users perceive the data
- ✓ Low-level: how the data is stored in the computer
- Analysis and design typically start at the top of work down

Many intermediate levels are possible

High-level modeling concepts

- ✓ DB Schema
 - vs. DB instance
- ✓ 3-schema architecture
 - External (view) level: what users are allowed to see
 - Conceptual level: abstract level, whole DB
 - our focus in this course
 - Internal level: storage structure

Independence between the levels is good

Implementing the schema

- ✔ Developed by system analysts
- ✓ Maintained by DBA
- ✔ DDL vs DML
- ✔ Data dictionary/system catalog
 - Active vs passive

Entity-Relationship (ER) Model

- ✓ Conceptual level
- ✓ Graphical conventions
- ✓ Easily turned into relational model
- ✓ Has limitations

Overview: identify and name the pieces of data needed in the application and identify key relationships and constraints

Entities and Attributes

- ✓ Entities: represent things in the real world
 - e.g. student, book, building, course, product
 - usually described by nouns in English
 - often corresponds to a struct in a programming lang.
- ✔ Attributes: represent qualities of entities
 - e.g. price, color, status, age, room number
 - attribute values are often adjectives in English
 - ALWAYS attached to entities
 - often corresponds to a simple type in a programming lang.
 - but compound and composite attributes exist too.

Types and instances

- ✓ Entity types vs entity instances
 - Person / FDR, Chelsea, Elizabeth R
 - Book / GWTW, Fire Your Boss, DB for Dummies
- ✔ Attributes vs values
 - Color / red, chartreuse, {red, white & blue}
 - Income / \$4,000,000 \$13,200
 - Address / 1600 Pennsylvania Avenue, 415 4th St. SE

Relationships

- ✓ Connections between entities
 - never between attributes
- ✓ "John owns a copy of GWTW"
 - John and GWTW are entities
 - The two entities are related ("owns")
- ✓ "John owns a first edition of GWTW"
 - 'first edition' is an attribute of GWTW
- ✓ "John was born in 1932"
 - 1932 is an attribute of John (no relationship)

Keys

- ✔ Attributes with unique values
 - Students: each has a unique SSN
 - Buildings: each has a unique address
 - May be more than one possible key
- ✓ Sometimes there is no natural key
 - List of plants encountered on a nature walk
 - List of first names of employee's dependents
 - Called "weak" entities if no proper key
 - Needs a relationship to a "strong" entity

Relationship Cardinalities

- ✓ 1 to 1 (1:1)
 - husband to (current) wife
 - company to its president
- ✓ Many to 1 (N:1) or 1 to many (1:N)
 - person to her children
 - company to its employees
- ✓ Many to many (N:M)
 - club member to clubs
 - student to classes

Relationship Attributes

- ✓ Sometimes attributes seem to attach to relationships rather than the entities involved
- ✓ "Faust sold his soul for \$10"
 - "sold" relationship
 - \$10 is a property of the relationship rather than of either Faust or his soul

E/R Notation

- ✓ Once the entities, attributes, relations, keys, cardinalities, etc. have been identified, the E/R drawing is straightforward!
- ✓ rectangles for entities
- ✓ diamonds for relationships
- ✓ ovals for attributes
- ✓ appropriate connecting lines and labels

The Real Problem

- ✔ Drawing the diagram isn't so hard.
 - Hint: use a big sheet of paper and write in pencil
- What's hard is understanding the problem well enough to know what entities, attributes, and relationships are needed to support the desired application.
- ✓ This may require an extended period of systems analysis and several iterations

E/R Model Strengths and weakness

- ✓ Easy to understand
- ✓ Maps well to relational model
- ✓ "Semantically impoverished"
 - so is the relational model!
- ✓ E/R has been extended (Chapter 21)
- ✓ Other models exist (Chapter 21)