
CSE 444: Database Internals

Section 9: 

Parallel Processing and MapReduce
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Review in this section

• Parallel DBMS
• MapReduce
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Parallel DBMS
R(a,b) is horizontally partitioned across N = 3 machines.

Each machine locally stores approximately 1/N of the tuples in R. 

The tuples are randomly organized across machines (i.e., R is block 
partitioned across machines).

Show a RA plan for this query and how it will be executed across the N = 3 
machines. 

Pick  an efficient plan that leverages the parallelism as much as possible. 

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

3



1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb   
FROM R
WHERE a > 0
GROUP BY a

R(a, b)
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1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb   
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

If more than one relation on a machine, then “scan S”, “scan R” etc
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1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb   
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

σ
a>0

σ
a>0

σ
a>0
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1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb   
FROM R
WHERE a > 0
GROUP BY  a

R(a, b)

scan scan scan

σ
a>0

σ
a>0

σ
a>0

γ
a, max(b)->

 
b

γ
a, max(b)->

 
b

γ
a, max(b)->

 
b
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1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb   
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

σ
a>0

σ
a>0

σ
a>0

γ
a, max(b)->

 
b

γ
a, max(b)->

 
b

γ
a, max(b)->

 
b

Hash on a Hash on a Hash on a
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1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aR(a, b)

scan scan scan

σ
a>0

σ
a>0

σ
a>0

γ
a, max(b)->

 
b

γ
a, max(b)->

 
b

γ
a, max(b)->

 
b

Hash on a Hash on a Hash on a
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1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aR(a, b)

scan scan scan

σ
a>0

σ
a>0

σ
a>0

γ
a, max(b)->

 
b

γ
a, max(b)->

 
b

γ
a, max(b)->

 
b

Hash on a Hash on a Hash on a

γ
a, 

max(b)->topb

γ
a, 

max(b)->topb

γ
a, 

max(b)->topb
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Benefit of hash-partitioning

• For parallel DBMS
– It would avoid the data re-shuffling phase

– It would compute the aggregates locally

SELECT a, max(b) as topb   
FROM R

WHERE a > 0
GROUP BY a
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1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aHash-partition on a for R(a, b)

scan scan scan

σ
a>0

σ
a>0

σ
a>0

γ
a, 

max(b)->topb

γ
a, 

max(b)->topb

γ
a, 

max(b)->topb
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Problem 1) 
Consider relations R(a,b), S(c,d), and T(e,f). All three are 
horizontally partitioned across N = 3 machines. 

The tuples are randomly organized across machines.

Show a relational algebra plan for the following query and how 
it will be executed across the N = 3 machines:

SELECT * 
FROM R, S, T 
WHERE R.b = S.c 

AND S.d = T.e 
AND (R.a - T.f) > 100 13



Problem 1) 

SELECT * 
FROM R, S, T 
WHERE R.b = S.c 
              AND S.d = T.e 
              AND (R.a - T.f) > 100
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R(a,b)
S(c,d)
T(e,f)



Problem 1) 

SELECT * 
FROM R, S, T 
WHERE R.b = S.c 
              AND S.d = T.e 
              AND (R.a - T.f) > 100
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R(a,b)
S(c,d)
T(e,f)



Problem 1) 

SELECT * 
FROM R, S, T 
WHERE R.b = S.c 
              AND S.d = T.e 
              AND (R.a - T.f) > 100

16

R(a,b)
S(c,d)
T(e,f)



Problem 1) 

SELECT * 
FROM R, S, T 
WHERE R.b = S.c 
              AND S.d = T.e 
              AND (R.a - T.f) > 100
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R(a,b)
S(c,d)
T(e,f)



Problem 1) 

SELECT * 
FROM R, S, T 
WHERE R.b = S.c 
              AND S.d = T.e 
              AND (R.a - T.f) > 100

18

R(a,b)
S(c,d)
T(e,f)



Problem 1) 

SELECT * 
FROM R, S, T 
WHERE R.b = S.c 
              AND S.d = T.e 
              AND (R.a - T.f) > 100
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R(a,b)
S(c,d)
T(e,f)



Problem 1) 

SELECT * 
FROM R, S, T 
WHERE R.b = S.c 
              AND S.d = T.e 
              AND (R.a - T.f) > 100
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R(a,b)
S(c,d)
T(e,f)



 Map Reduce
Explain how the query will be executed in 

MapReduce

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

Specify the computation performed in the map and 
the reduce functions
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Map

• Each map task
– Scans a block of R

– Calls the map function for each tuple

– The map function applies the selection predicate to the 
tuple

– For each tuple satisfying the selection, it outputs a record 
with key = a and value = b 

SELECT a, max(b) as topb   
FROM R
WHERE a > 0
GROUP BY a

Note: When each map task scans multiple 
relations, it needs to output something like 
key = a and value = (‘R’, b)  which has the 
relation name ‘R’
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R(a, b)



Shuffle

• The MapReduce engine reshuffles the output of the 
map phase and groups it on the intermediate key, i.e. 
the attribute a

SELECT a, max(b) as topb   
FROM R
WHERE a > 0
GROUP BY a

Note: the programmer has to write only the map 
and reduce functions, the shuffle phase is done by 
the MapReduce engine (although the programmer 
can rewrite the partition function).
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R(a, b)



Reduce
SELECT a, max(b) as topb   
FROM R
WHERE a > 0
GROUP BY a

• Each reduce task
• computes the aggregate value max(b) = topb for each group 

(i.e. a) assigned to it (by calling the reduce function) 

• outputs the final results: (a,  topb)    

Note: A local combiner can be used to 
compute local max before data gets 
reshuffled (in the map tasks)
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R(a, b)



1/3 R 1/3 R 1/3 R
File system: 
HDFS

Could use a Combiner
(compute local max)
key = a, value =max(b)

SELECT a, max(b) as topb   
FROM R
WHERE a > 0
GROUP BY a
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Map:
- Scans R
- Applies selection 

predicate
- Output: key = a, value = b

Reduce:
- Computes final 

aggregate

R(a, b)
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Benefit of hash-partitioning

• For MapReduce
– Logically, MR won’t know that the data is 

hash-partitioned
– MR treats map and reduce functions as black-boxes 

and does not perform any optimizations on them

• But, if a local combiner is used
– Saves communication cost: 

• fewer tuples will be emitted by the map tasks

– Saves computation cost in the reducers: 
• the reducers would not have to do as much work

SELECT a, max(b) as topb   
FROM R

WHERE a > 0
GROUP BY a
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Problem 2) 
Consider two relations R(a, b) and S(b, c). 

SELECT R.b, max(S.c) as cmax 
FROM R, S 
WHERE R.b = S.b 

AND R.a <= 100 
GROUP BY R.b

For the Map function, what are the computations performed, and 
what will be its outputs? Assume that the Map function reads a block 
of R or S relation as input.
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For the Reduce function, what will be its inputs, what are the 
computations performed, and what will be its outputs?



Problem 2) 
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SELECT R.b, max(S.c) as cmax 
FROM R, S 
WHERE R.b = S.b 

AND R.a <= 100 
GROUP BY R.b

Map Function: 
• If the map function processes a block of the R relation, it applies the selection 

predicate to each R tuple in that block (R.a <= 100), and if the tuple passes the 
selection, it outputs a record with key= R.b and value= (‘R’ , R.a).

• If the map function processes a block of the S relation, it outputs a record with key = 
S.b and value = (’S’, S.c).

Reduce Function: 
•  Input to the reducer: The same b as the key and a list of R or S tuples (‘R’ , R.a) or (‘S’, 

S.c). In other words, we have … (b, (value from R, value from S, value from S, etc ….))
• Computation: The reducer performs the local join of R and S and finds the max(S.c) 

value. 

R(a, b)
S(b, c) 

Note: In some cases, you may need 
to perform more than one 
MapReduce job to get the final result



Comparing between Parallel DBMSs 
and MapReduce Systems

Parallel DBMS:
• Offers updates, transactions, indexing
• Pipelined parallelism

MapReduce: 
• Fault-tolerance
• Can handle stragglers
• Easy to scale
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