
CSE 444: Database Internals

Section 9:

Parallel Processing and MapReduce

1

Review in this section

• Parallel DBMS
• MapReduce

2

Parallel DBMS
R(a,b) is horizontally partitioned across N = 3 machines.

Each machine locally stores approximately 1/N of the tuples in R.

The tuples are randomly organized across machines (i.e., R is block
partitioned across machines).

Show a RA plan for this query and how it will be executed across the N = 3
machines.

Pick an efficient plan that leverages the parallelism as much as possible.

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

3

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

4

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

If more than one relation on a machine, then “scan S”, “scan R” etc

5

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

σ
a>0

σ
a>0

σ
a>0

6

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

σ
a>0

σ
a>0

σ
a>0

γ
a, max(b)->

b

γ
a, max(b)->

b

γ
a, max(b)->

b

7

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

σ
a>0

σ
a>0

σ
a>0

γ
a, max(b)->

b

γ
a, max(b)->

b

γ
a, max(b)->

b

Hash on a Hash on a Hash on a

8

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aR(a, b)

scan scan scan

σ
a>0

σ
a>0

σ
a>0

γ
a, max(b)->

b

γ
a, max(b)->

b

γ
a, max(b)->

b

Hash on a Hash on a Hash on a

9

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aR(a, b)

scan scan scan

σ
a>0

σ
a>0

σ
a>0

γ
a, max(b)->

b

γ
a, max(b)->

b

γ
a, max(b)->

b

Hash on a Hash on a Hash on a

γ
a,

max(b)->topb

γ
a,

max(b)->topb

γ
a,

max(b)->topb

10

Benefit of hash-partitioning

• For parallel DBMS
– It would avoid the data re-shuffling phase

– It would compute the aggregates locally

SELECT a, max(b) as topb
FROM R

WHERE a > 0
GROUP BY a

11

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
WHERE a > 0 GROUP BY aHash-partition on a for R(a, b)

scan scan scan

σ
a>0

σ
a>0

σ
a>0

γ
a,

max(b)->topb

γ
a,

max(b)->topb

γ
a,

max(b)->topb

12

Problem 1)
Consider relations R(a,b), S(c,d), and T(e,f). All three are
horizontally partitioned across N = 3 machines.

The tuples are randomly organized across machines.

Show a relational algebra plan for the following query and how
it will be executed across the N = 3 machines:

SELECT *
FROM R, S, T
WHERE R.b = S.c

AND S.d = T.e
AND (R.a - T.f) > 100 13

Problem 1)

SELECT *
FROM R, S, T
WHERE R.b = S.c
 AND S.d = T.e
 AND (R.a - T.f) > 100

14

R(a,b)
S(c,d)
T(e,f)

Problem 1)

SELECT *
FROM R, S, T
WHERE R.b = S.c
 AND S.d = T.e
 AND (R.a - T.f) > 100

15

R(a,b)
S(c,d)
T(e,f)

Problem 1)

SELECT *
FROM R, S, T
WHERE R.b = S.c
 AND S.d = T.e
 AND (R.a - T.f) > 100

16

R(a,b)
S(c,d)
T(e,f)

Problem 1)

SELECT *
FROM R, S, T
WHERE R.b = S.c
 AND S.d = T.e
 AND (R.a - T.f) > 100

17

R(a,b)
S(c,d)
T(e,f)

Problem 1)

SELECT *
FROM R, S, T
WHERE R.b = S.c
 AND S.d = T.e
 AND (R.a - T.f) > 100

18

R(a,b)
S(c,d)
T(e,f)

Problem 1)

SELECT *
FROM R, S, T
WHERE R.b = S.c
 AND S.d = T.e
 AND (R.a - T.f) > 100

19

R(a,b)
S(c,d)
T(e,f)

Problem 1)

SELECT *
FROM R, S, T
WHERE R.b = S.c
 AND S.d = T.e
 AND (R.a - T.f) > 100

20

R(a,b)
S(c,d)
T(e,f)

 Map Reduce
Explain how the query will be executed in

MapReduce

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

Specify the computation performed in the map and
the reduce functions

21

Map

• Each map task
– Scans a block of R

– Calls the map function for each tuple

– The map function applies the selection predicate to the
tuple

– For each tuple satisfying the selection, it outputs a record
with key = a and value = b

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

Note: When each map task scans multiple
relations, it needs to output something like
key = a and value = (‘R’, b) which has the
relation name ‘R’

22

R(a, b)

Shuffle

• The MapReduce engine reshuffles the output of the
map phase and groups it on the intermediate key, i.e.
the attribute a

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

Note: the programmer has to write only the map
and reduce functions, the shuffle phase is done by
the MapReduce engine (although the programmer
can rewrite the partition function).

23

R(a, b)

Reduce
SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

• Each reduce task
• computes the aggregate value max(b) = topb for each group

(i.e. a) assigned to it (by calling the reduce function)

• outputs the final results: (a, topb)

Note: A local combiner can be used to
compute local max before data gets
reshuffled (in the map tasks)

24

R(a, b)

1/3 R 1/3 R 1/3 R
File system:
HDFS

Could use a Combiner
(compute local max)
key = a, value =max(b)

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

25

Map:
- Scans R
- Applies selection

predicate
- Output: key = a, value = b

Reduce:
- Computes final

aggregate

R(a, b)

26

Benefit of hash-partitioning

• For MapReduce
– Logically, MR won’t know that the data is

hash-partitioned
– MR treats map and reduce functions as black-boxes

and does not perform any optimizations on them

• But, if a local combiner is used
– Saves communication cost:

• fewer tuples will be emitted by the map tasks

– Saves computation cost in the reducers:
• the reducers would not have to do as much work

SELECT a, max(b) as topb
FROM R

WHERE a > 0
GROUP BY a

27

Problem 2)
Consider two relations R(a, b) and S(b, c).

SELECT R.b, max(S.c) as cmax
FROM R, S
WHERE R.b = S.b

AND R.a <= 100
GROUP BY R.b

For the Map function, what are the computations performed, and
what will be its outputs? Assume that the Map function reads a block
of R or S relation as input.

28

For the Reduce function, what will be its inputs, what are the
computations performed, and what will be its outputs?

Problem 2)

29

SELECT R.b, max(S.c) as cmax
FROM R, S
WHERE R.b = S.b

AND R.a <= 100
GROUP BY R.b

Map Function:
• If the map function processes a block of the R relation, it applies the selection

predicate to each R tuple in that block (R.a <= 100), and if the tuple passes the
selection, it outputs a record with key= R.b and value= (‘R’ , R.a).

• If the map function processes a block of the S relation, it outputs a record with key =
S.b and value = (’S’, S.c).

Reduce Function:
• Input to the reducer: The same b as the key and a list of R or S tuples (‘R’ , R.a) or (‘S’,

S.c). In other words, we have … (b, (value from R, value from S, value from S, etc ….))
• Computation: The reducer performs the local join of R and S and finds the max(S.c)

value.

R(a, b)
S(b, c)

Note: In some cases, you may need
to perform more than one
MapReduce job to get the final result

Comparing between Parallel DBMSs
and MapReduce Systems

Parallel DBMS:
• Offers updates, transactions, indexing
• Pipelined parallelism

MapReduce:
• Fault-tolerance
• Can handle stragglers
• Easy to scale

30

