b

o0 s, Shuffe S,45,. 5, 0n (00
$estionlD
NumberOfsession
Date \
FK1 | ExparimentiD NN A\
\ Y
A 7 = \\x/ / LNV Worker 1
\‘\ 74 A NN
L2) .
" Yo 3 rih e, /N AVAN TR
- — " A AT ? s < M X
L ooy I e e SIS o\ [s] NN
a1 [sessiond [[oeke / 1l Worker 2 Worker 2 PaVa Worker2
NumberOfTrial Pcsabuien e / \ / >N\ jorker
' lViszeas)y /7N £\
X2 | setupin / i S / \
s)\ . A Bl N T N EED
start /)
e oy
Setupharker 5l z Y L, Y Worker 3 Worker 3 Worker 3
Record edMovieie Nt ‘ V), A/
bt MelisandrTheon & DN » (a) Traditional parallel lan
% N e | a) Traditional parallel query plas
" =
S »
‘Trial_has_Timecourse Trial_has_Trajecton s 3 A P
. . : ra3 v EIG)
Rickon— Eddardirionne i =] A [s.] J
- i | E—.
i1 [rrstin [T NIy 7 = \ gyon Var e —7 n
" " = h N ¢ 7 HyperCube pis
2 [rimecoursern 2 | Trajectory0 Zi) e T > [G5] Swe [s >N
‘ { ‘ol ! Podicy ¢ | BLJ—— s |
Loras, KeviShae 5
Timecourse: Trajectory = . ol —
x| Timecoursen |1 o N G
oune —— phy s
s TGToigna o0 V7 A
Frequency Frequency . Brom 2 v
Segmentid Segmenti0 Meryn
KindOfData KindOfData Gendry yn
Nerames Markerto
g NFrames iCube shuffle-based parallel
LT

Database System Internals

MapReduce

March 7, 2025

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

CSE 444 — MapReduce

Parallel Data Processing

OLAP: Online Analytical Processing
» Big queries: joins, group-by, large data
* No updates

» Use parallelism/distribution to improve
performance

» Challenge: optimize ONE query

OLTP: Online Transaction Processing

» Big data, but simple query: many simple updates
= Distribute data to support large workloads

» Challenge: ACID or something weaker

March 7, 2025 CSE 444 — MapReduce 4

This lecture

Data model? Relational

Scaleup goal? OLAP

Architecture? Shared-Nothing

This lecture

Data model? Relational

!

text/kv-pairs

Scaleup goal? OLAP

Architecture? Shared-Nothing

References

» MapReduce: Simplified Data Processing on Large
Clusters. Jeffrey Dean and Sanjay Ghemawat.
OSDI'04

» Mining of Massive Datasets, by Rajaraman and
Ullman, http://i.stanford.edu/~ullman/mmds.html
* Map-reduce (Section 20.2);
« Chapter 2 (Sections 1,2,3 only)

March 7, 2025 CSE 444 — MapReduce 7

http://i.stanford.edu/~ullman/mmds.html

» MapReduce is obsolete now
Interesting only from a historical perspective

* |t has had an important influence, still visible today,
but newer systems do a better job at adopting
traditional database principles:

« Spark
« Snowflake -- standard highly distributed SQL

March 7, 2025 CSE 444 — MapReduce 8

Map Reduce Review

» Google: [Dean 2004]
= Open source implementation: Hadoop

» MapReduce = high-level programming model and
implementation for large-scale parallel data
processing

March 7, 2025 CSE 444 — MapReduce 9

MapReduce Motivation

* Not designed to be a DBMS

= But to simplify task of writing parallel programs
« Simple programming model that applies to many problems

» Hides messy details in runtime library:
« Automatic parallelization

Load balancing

Network and disk transfer optimizations

Handling of machine failures

Robustness

content in part from: Jeff Dean

March 7, 2025 CSE 444 — MapReduce

Data Processing at Massive Scale

» Massive parallelism:
* 100s, or 1000s, or 10000s servers (think data center)
* Many hours

= Failure:
* [f medium-time-between-failure is 1 year
* Then 10000 servers have one failure / hour

March 7, 2025 CSE 444 — MapReduce 11

Data Storage: GFS/HDFS

» MapReduce job input is a file

= Distributed file system:
* GFS: Google File System
« HDFS: Hadoop File System

= File is split into “blocks” or “chunks™. 64MB or so

» Blocks are replicated & stored on random
machines

* Files are append only

March 7, 2025 CSE 444 — MapReduce 12

MapReduce: Data Model

Files !
Afile = a bag of (key, wvalue) pairs
A MapReduce program:

" Input: a bag of (inputkey, wvalue) pairs
* Qutput: a bag of (outputkey, wvalue)pairs

March 7, 2025 CSE 444 — MapReduce

Step 1: the MAP Phase

User provides the MAP-function:

" |nput: (input key, value)

» Quput: bag of (intermediate key, value)

System applies map function in parallel to all
(input key, wvalue) pairsin the input file

March 7, 2025 CSE 444 — MapReduce 14

Step 2: the REDUCE Phase

User provides the REDUCE function:

" Input: (intermediate key, bag of wvalues)

= Output:
 Original MR paper: bag of output (values)
« Hadoop: bag of (output key, values)

System groups all pairs with the same intermediate
key, and passes the bag of values to REDUCE

March 7, 2025 CSE 444 — MapReduce 15

» Counting the number of occurrences of each word
in a large collection of documents

= Each Document

* The key = document id (did)
* The value = set of words (word)

reduce(String key, lterator values):

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:
Emitintermediate(w, “17);

March 7, 2025

// key: a word

// values: a list of counts

int result = 0;

for each v in values:
result += Parselnt(v);

Emit(AsString(result));

CSE 444 — MapReduce 16

MAP REDUCE

—> | (w1,1)

N Shuffle

(w2,1)

(did1,v1)

> | w3,1) w1, (1,1,1,...,1)) —> | (w1, 25)
w2, (1,1,...)) — | (w2, 77)
(did2,v2) > | (w1,1) W3,(1...)) ——>| w3,12)

—> | (w2,1)

(did3,v3)|—

March 7, 2025 17

Jobs vs. Tasks

= A MapReduce Job

* One single “query”, e.g. count the words in all docs
* More complex queries may consists of multiple jobs

* A Map Task, or a Reduce Task

« A group of instantiations of the map-, or reduce-
function, which are scheduled on a single worker

March 7, 2025 CSE 444 — MapReduce 18

= A worker is a process that executes one task at a
time

= Typically there is one worker per processor, hence
4 or 8 per node

= Often talk about “slots”
* E.g9., Each server has 2 map slots and 2 reduce slots

March 7, 2025 CSE 444 — MapReduce 19

T \—% (w1,1) Shuffle /
(did1,v1) |7 | w21 - ~
T w3 > | w1, (1,1,1,...,1)) —> | (w1, 25)
>< w2, (1,1,...)) —> | w2, 77)
(did2,V2) T w1 L w3,1..) > | (w3, 12)
(w2,1) —)
(did3,v3) \ |

March Z, 2025 CSE 444 — MapReduce

Parallel MapReduce Detalls

Output to disk,
replicated in cluster

Intermediate data
goes to local disk

Reduce Task

(Shuffle)

Data not
necessarily local

Task
<>

% % % % File system: GFS
or HDFS

March 7, 2025 CSE 444 — MapReduce 21

MapReduce Implementation

= There is one master node

* Input file gets partitioned further into M’ splits
« Each split is a contiguous piece of the input file
By default splits correspond to blocks

» Master assigns workers (=servers) to the M’ map
tasks, keeps track of their progress

= Workers write their output to local disk
» Qutput of each map task is partitioned into R regions
» Master assigns workers to the R reduce tasks

» Reduce workers read regions from the map workers’
local disks

March 7, 2025 CSE 444 — MapReduce 22

MapReduce Phases

Map Task Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

—»| Copy @—»‘ Reduce \
l file
e

HDFS

Split Record Reader—Map —#'Combine

- = —

~ Local storage

March 7, 2025 CSE 444 — MapReduce 23

eeeeeeeeeeeee

22222222222

22222222222

T eeeeeeeeeeee

PageRank Application
» Reduce tasks do not begin until all map tasks are finished

Time (seconds)
0 50 100 150 200 250 300 350

= Shuffle = Sort Exec

o>

Tasks
uﬁ%
o | |

Orange line is one reduce task
Can’t start until all maps finished

March 7, 2025 CSE 444 — MapReduce 26

moOCcComao

Skew

PageRank Application
* Reduce tasks do not begin until all map tasks are finished

Time (seconds)
0 50 100 150 200 250 300 350

‘ 2 Shuffle ®Sort mExec

After 70 seconds, all but
one task are finished...

March 7, 2025 CSE 444 — MapReduce 27

Tasks

moOCcComao

Skew

PageRank Application
* Reduce tasks do not begin until all map tasks are finished

0

50

100

Time (seconds)
150 200 250

300

350

/

fter 70 seconds, all but

one task are finished...

e

March 7, 2025

Tasks

moOCcComao

W

= Shuffle = Sort

\
So all this time is waiting

on one worker to finish

CSE 444 — MapReduce

Exec

28

Hadoop dashboard example

14

Yr Hadoop - Overview

E Enable dashboard time controls...

scluster * v $node * v $application * v $job * v & esc|/ &
Volume failures L8 Under replicated blocks ih Blocks 1h Maps running/completed 4h
HDFS MapReduce » Applications
6h'ks 1 51 K"“‘s osk || ||n| ||||| ||||| Running 1h Pending 1h Killed i Failed 1h
HDFS Disk usage FOM Total nodes th - | .|I||| .|I|II .|l||| .|I|||
Pending maps/reduces 4h 1 0 0 0
" Submitted 1h Allocated Memory/App 4h
05K © . |
28K pomm mm
ini F 1h e R —— i . - e o
160 Completed 1h Allocated vCores/App 4h
1 Reduces running/completed 4h 15
9%
& 1 10
» nodes os 28 K s
1300 14:00 1500 16:00
0 o
Spark Nodes Cluster
Running 1 Stages ih Maxmem.. 'w Total Dura.. 1w Tasks 1h Avg containers/node im Used cores im Avail cores m Total vCores 1h Containers 1h
1 1 ZGiB/s 47 K 1 K 0.3 333 mcores 8cores 0.5
Spark Tasks: Running, Completed, Skipped, Fail... 4h Spark Stages: Running, Completed, Skipped, Fai... 4h Wl Active 1h Sick 1h Lost 1h 4h
® o, —
1
05K f] 1 - 2 nodes O nodes 0 nodes
o Memory usage 4h
1300 1400 1500 1600 1300 1400 15100 1600 15100 1530 16:00 16:30
Y r— RR— ME—
Spark Jobs : Running, Succeeded, Failed 4h Max memory (GB) w Virtual Core usage 4h
16
106 10
! 8G 8 8
G i 9
05 4G 13:00 0 15:30 16:00 1630 5
2) 2
i 1| il " Virtual Core usage 4h "
1300 1400 1500 1600 Thu? sato Montl Wed13 W 1300 1330 1800 1430 15:00 1530 16:00 16:30
Events that match "spark has status " W Runtime w e Container usage 4h
10
60K L 8
40K 4 6
4
20k 2
2
0K 0 0
Thu? sato Mon 11 Wed 13 13:00 1330 1400 1430 15100 1530 16:00 1630 1300 1330 14:00 1430 15:00 15:30 16:00 16:30

March 7, 2025

CSE 444 — MapReduce

Interesting Implementation Detalls

= \Worker failure:
« Master pings workers periodically,
* |f down then reassigns its task to another worker
 (# a parallel DBMS restarts whole query)

* How many map and reduce tasks:
 Larger is better for load balancing

« But more tasks also add overheads
* (# parallel DBMS spreads ops across all nodes)

March 7, 2025 CSE 444 — MapReduce K{0]

Interesting Implementation Detalls

Backup tasks:

» Straggler = a machine that takes unusually long
time to complete one of the last tasks. Eg:

« Bad disk forces frequent correctable errors (30MB/s -
1MB/s)

 The cluster scheduler has scheduled other tasks on that
machine

» Stragglers are a main reason for slowdown

= Solution: pre-emptive backup execution of the last
few remaining in-progress tasks

March 7, 2025 CSE 444 — MapReduce 31

The State of MapReduce Systems

= Lots of extensions to address limitations
« Capabilities to write DAGs of MapReduce jobs
* Declarative languages

« Ability to read from structured storage (e.g., indexes)
* Etc.

» Most companies use both types of engines (MR
and DBMS), with increased integration

* New systems emerged which improve over
MapReduce: e.g. Spark

March 7, 2025 CSE 444 — MapReduce 32

Relational Queries over MR

= Query = query plan

» Each operator = one MapReduce job

March 7, 2025 CSE 444 — MapReduce 33

GroupBYy in MapReduce

Doc(key, word)

MapReduce IS A GroupBY!

MAP=GROUP BY, REDUCE=Aggregate

SELECT word, sum(1)
FROM Doc
GROUP BY word

March 7, 2025

Joins in MapReduce

" [f MR is GROUP-BY plus AGGREGATE, then how
do we compute R(A,B) x S(B,C) using MR?

March 7, 2025

Joins in MapReduce

" [f MR is GROUP-BY plus AGGREGATE, then how
do we compute R(A,B) x S(B,C) using MR?

= Answer:

« Map: group R by R.B, group S by S.B
* Input = either a tuple R(a,b) or a tuple S(b,c)
e Output = (b,R(a,b)) or (b,S(b,c)) respectively

* Reduce:
* Input = (b,{R(a1,b),R(a2,b),...,S(b,c1),S(b,c2),...})
* Output = {R(a1,b),R(a2,b),...} x {S(b,c1),S(b,c2),...}
* In practice: improve the reduce function (next...)

March 7, 2025

Users(name, age)
Pages(userName, url)

Users = load ‘users’ as (name, age):;
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

map([String key], String value):
// value.relation is either ‘Users’ or ‘Pages’
if value.relation="Users’:
Emitintermediate(value.name, (1, value));
else // value.relation="Pages’:
Emitintermediate(value.userName, (2, value));

reduce(String user, lterator values):
Users = empty; Pages = empty;
for each v in values:
if v.type = 1: Users.insert(v)
else Pages.insert(v);
for v1 in Users, for v2 in Pages
Emit(v1,v2);

Join iIn MR

Users(name, age)
Pages(userName, url)

Users = load ‘users’ as (name, age):;
Pages = load ‘pages’ as (userName, url);
Jnd = Join Users by name, Pages by userName;

March 7, 2025

Join iIn MR

Users(name, age)
Pages(userName, url)

Users = load ‘users’ as (name, age):;
Pages = load ‘pages’ as (userName, url);
Jnd = Join Users by name, Pages by userName;

March 7, 2025

Users(name, age)
Pages(userName, url)

Users = load ‘users’ as (name, age):;
Pages = load ‘pages’ as (userName, url);
Jnd = Join Users by name, Pages by userName;

/ Map 1 \

March 7, 2025

Join iIn MR

Users(name, age)
Pages(userName, url)

Users = load ‘users’ as (name, age):;
Pages = load ‘pages’ as (userName, url);
Jnd = joiln Users by name, Pages by userName
/ \ from relation #1
Map 1 3

(1, use?)

Means: it comes
from relation #2

©)
o

(2, userName)

March 7, 2025

Users
Pages
Jnd =

March 7, 2025

= Jload

‘users’
load ‘pages’

join Users by name,

as
as

(name, age);

Users(name, age)

Pages(userName, url)

(userName, url);

4 N

Map 1

Pages by userName;

-

(1, user)

V

Reducer 1

(1, fred)
(2, fred)
(2, fred)

~

-
4

Vv

(2, userName)

\

Reducer 2

(1, jane)
(2, jane)
(2, jane)

/
N

/

Parallel DBMS vs MapReduce

Parallel DBMS

» Relational data model and schema

» Declarative query language: SQL

» Many pre-defined operators: relational algebra

= Can easily combine operators into complex
queries

» Query optimization, indexing, and physical tuning

» Streams data from one operator to the next without
blocking

» Can do more than just run queries: Data
management

» Updates and transactions, constraints, security, etc.

MapReduce: A major step backwards article by David DeW/itt
March 7, 2025 CSE 444 — MapReduce 43

Parallel DBMS vs MapReduce

MapReduce

» Data model is a file with key-value pairs!

* No need to “load data” before processing it
» Easy to write user-defined operators

» Can easily add nodes to the cluster (no need to even
restart)

. tUses less memory since processes one key-group at a
ime

» [ntra-query fault-tolerance thanks to results on disk

» [ntermediate results on disk also facilitate scheduling
» Handles adverse conditions: e.g., stragglers

. Ar%uably more scalable... but also needs more

MapReduce: A major step backwards article by David DeW/itt
March 7, 2025 CSE 444 — MapReduce 44

