

Database System Internals Intro to Parallel DBMSs

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

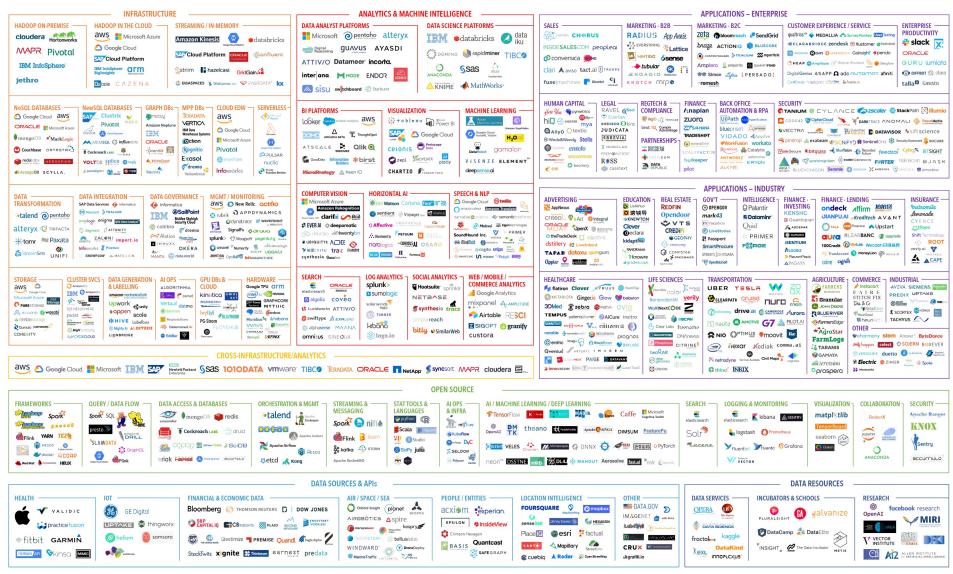
What We Have Already Learned

- Phase 1: Query Execution
 - Data Storage and Indexing
 - Buffer management
 - Query evaluation and operator algorithms
 - Query optimization
- Phase 2: Transaction Processing
 - Concurrency control: pessimistic and optimistic
 - Transaction recovery: undo, redo, and undo/redo
- Phase 3: Parallel Processing & Distributed Transactions

Where We Are Headed Next

- Scaling the execution of a query
 - Parallel DBMS
 - MapReduce
 - Spark
- Scaling transactions
 - Distributed transactions
 - Replication

DATA & AI LANDSCAPE 2019



© Matt Turck (@mattturck), Lisa Xu (@lisaxu92), &

© Matt Turck (@mattturck), Lisa Xu (@lisaxu92), & FirstMark (@firstmarkcap) mattturck.com/data2019

FIRSTMARK

Current version at https://mad.firstmark.com/

July 16, 2019 - FINAL 2019 VERSION

How to Scale the DBMS?

- Can easily replicate the web servers and the application servers
- We cannot so easily replicate the database servers, because the database is unique
- We need to design ways to scale up the DBMS

Building Our Parallel DBMS

Data model?

Relational (SimpleDB!)

Building Our Parallel DBMS

Data model?

Relational (SimpleDB!)

Scaleup goal?

Scaling Transactions Per Second

- OLTP: Transactions per second "Online Transaction Processing"
- Amazon
- Facebook
- Twitter
- ... your favorite Internet application...
- Goal is to increase transaction throughput
- We will get back to this next week

Scaling Single Query Response Time

- OLAP: Query response time "Online Analytical Processing"
- Entire parallel system answers one query
- Goal is to improve query runtime
- Use case is analysis of massive datasets

Volume alone is not an issue

- Relational databases *do* parallelize easily; techniques available from the 80's
 - Data partitioning
 - Parallel query processing
- SQL is embarrassingly parallel
 - We will learn how to do this!

New workloads are an issue

- Big volumes, small analytics
 - OLAP queries: join + group-by + aggregate
 - Can be handled by today's RDBMSs
- Big volumes, big analytics
 - More complex Machine Learning, e.g. click prediction, topic modeling, SVM, k-means
 - Requires innovation Active research area

Building Our Parallel DBMS

Data model? Relational

Scaleup goal? OLAP

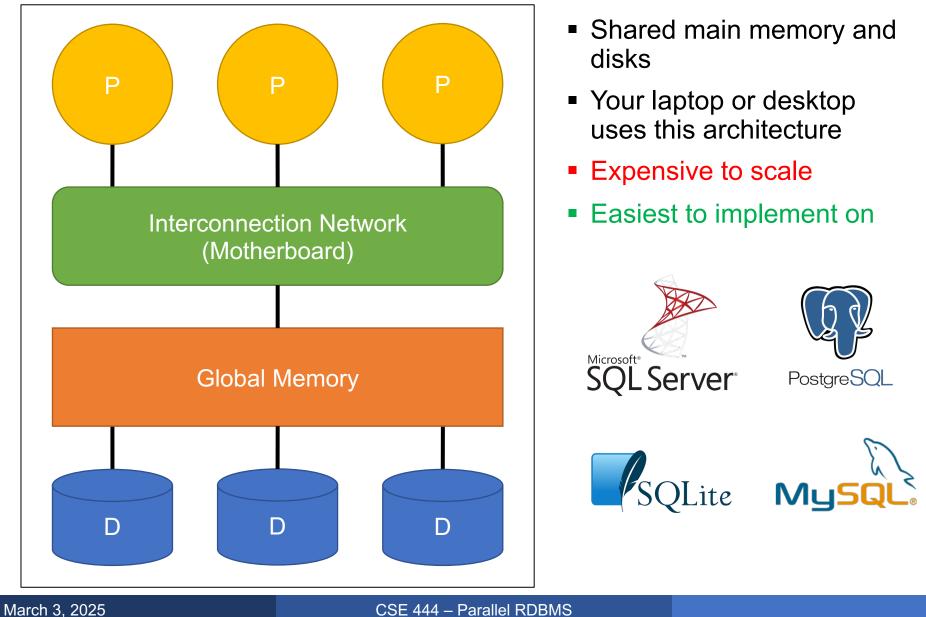
Building Our Parallel DBMS

Data model? Relational

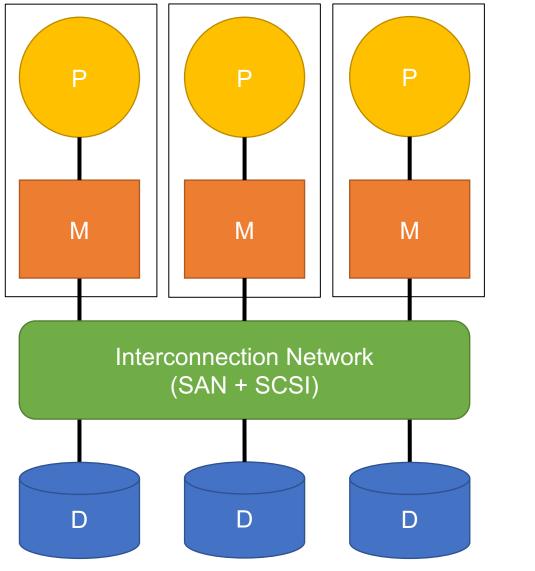
Scaleup goal? OLAP

Architecture?

Shared-Memory Architecture

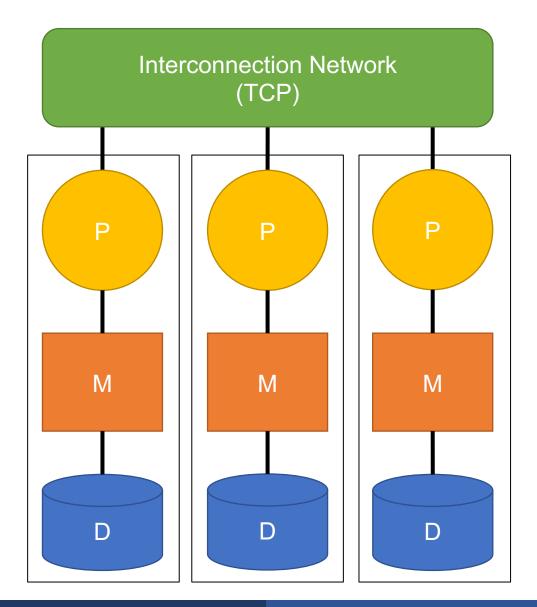


Shared-Disk Architecture



- Only shared disks
- No contention for memory and high availability
- Typically 1-10 machines

Shared-Nothing Architecture



- Uses cheap, commodity hardware
- No contention for memory and high availability
- Theoretically can scale infinitely
- Hardest to implement on

Building Our Parallel DBMS

Data model? Relational

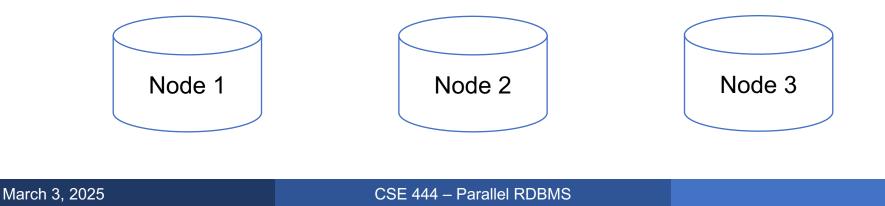
Scaleup goal? OLAP

Architecture?

Shared-Nothing

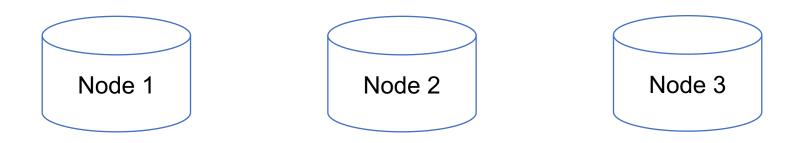
Shared-Nothing Execution Basics

- Multiple DBMS instances (= processes) also called "nodes" execute on machines in a cluster
 - One node plays role of the coordinator
 - Other nodes play role of workers
- Workers execute queries
 - Typically all workers execute the same plan
 - Workers can execute multiple queries at the same time



We will assume a system that consists of multiple commodity machines on a common network

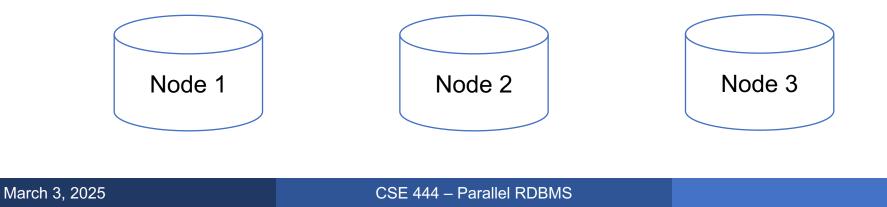
New problem: Where does the data go?



We will assume a system that consists of multiple commodity machines on a common network

New problem: Where does the data go?

The answer will influence our execution techniques

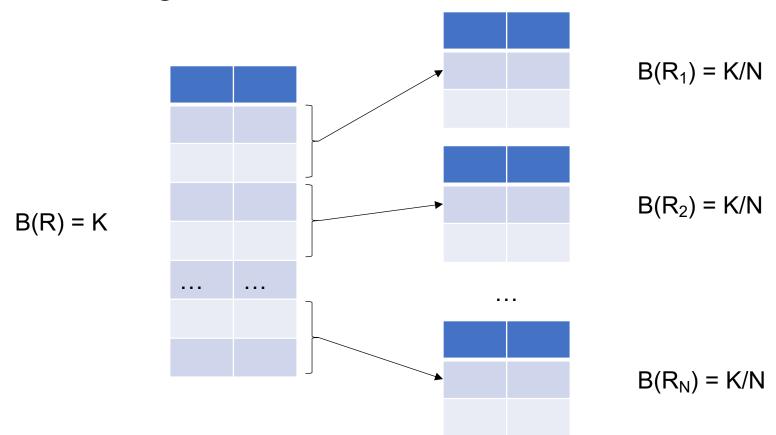


Option 1: Unpartitioned Table

- Entire table on just one node in the system
- Will bottleneck any query we need to run in parallel
- We choose partitioning scheme to divide rows among machines

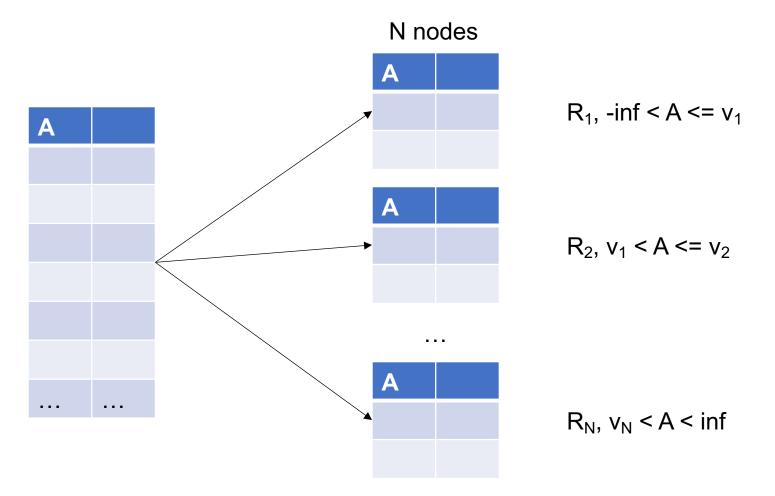
Option 2: Block Partitioning

Tuples are horizontally (row) partitioned by raw size with no ordering considered N nodes



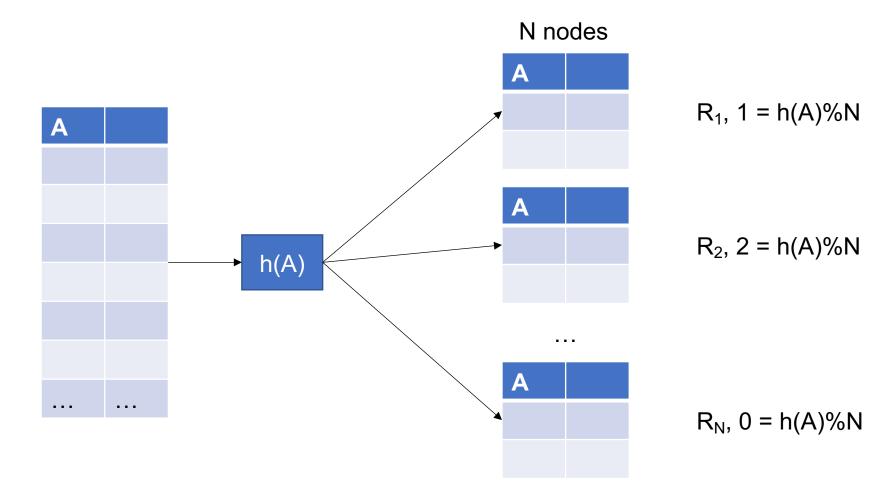
Option 3: Range Partitioning

Node contains tuples in chosen attribute ranges



Option 4: Hash Partitioning

Node contains tuples with chosen attribute hashes

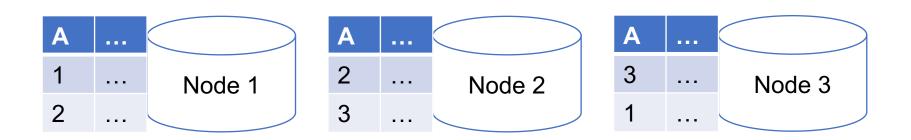


Skew: The Justin Bieber Effect

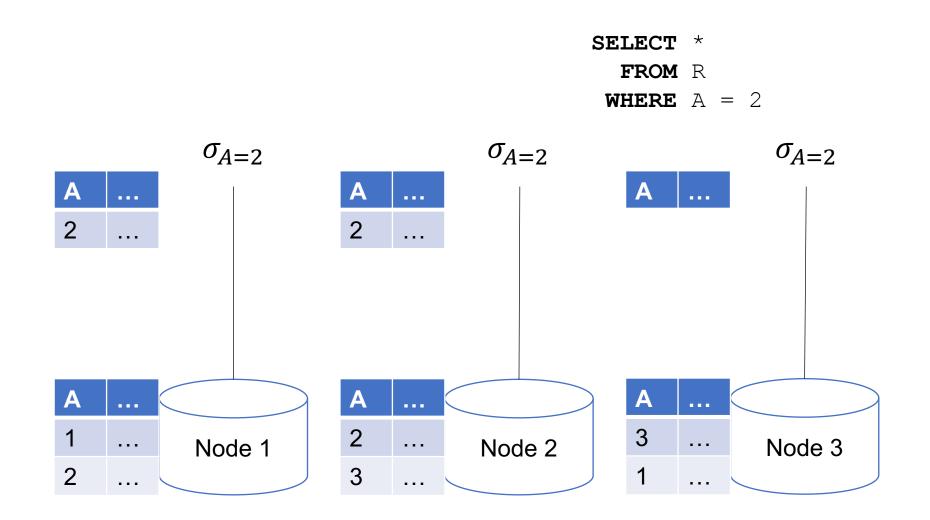
- Hashing data to nodes is very good when the attribute chosen better approximates a uniform distribution
- Keep in mind: Certain nodes will become bottlenecks if a poorly chosen attribute is hashed

Parallel Selection

Assume: R is block partitioned SELECT * FROM R WHERE A = 2

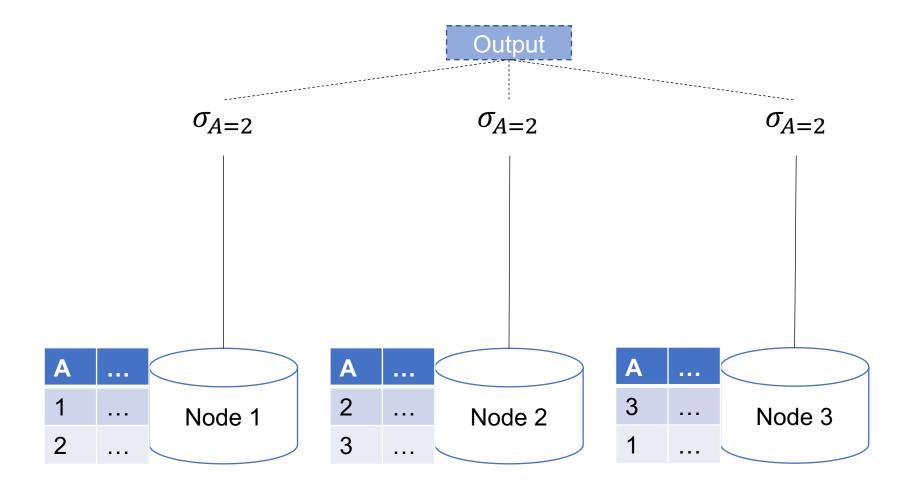


Parallel Selection

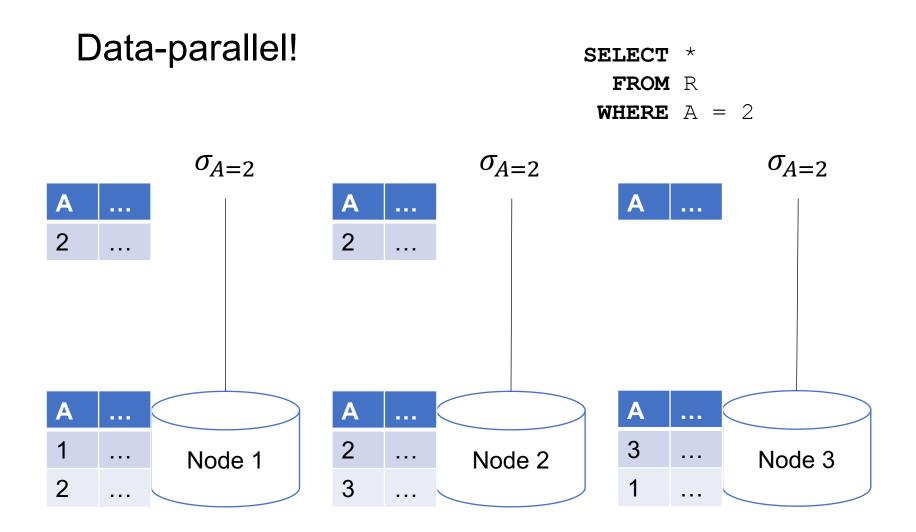


Implicit Union

Parallel query plans implicitly union at the end



Parallel Selection



Compute $\sigma_{A=v}(R)$, or $\sigma_{v1 < A < v2}(R)$

On a conventional database: cost = B(R)

Q: What is the cost on each node for a database with N nodes ?

A:

Compute $\sigma_{A=v}(R)$, or $\sigma_{v1 < A < v2}(R)$

• On a conventional database: cost = B(R)

Q: What is the cost on each node for a database with N nodes ?

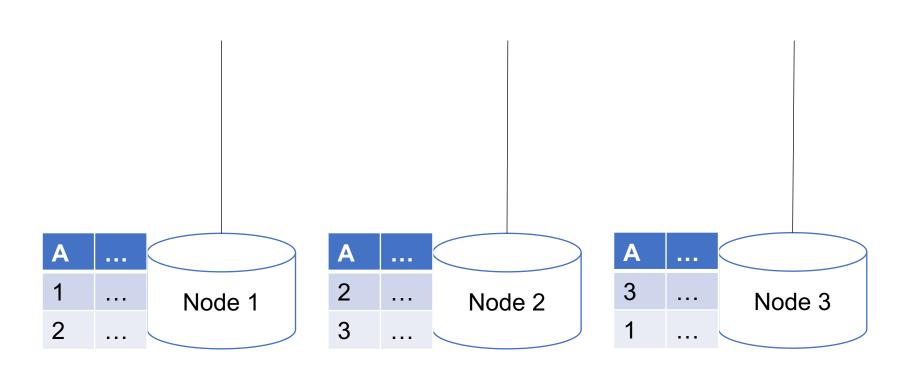
A: B(R) / N block reads on each node

Parallel Selection

What if this query is not data-parallel?

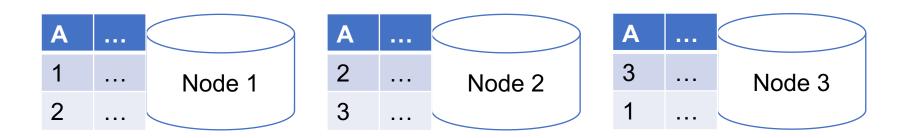
Assume: R is block partitioned SELECT * FROM R

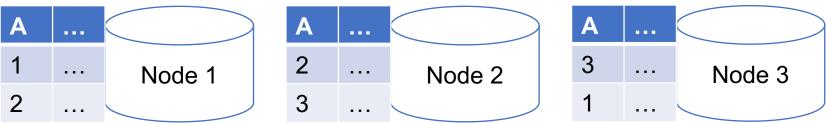
.....



Assume: R is block partitioned SELECT * FROM R GROUP BY R.A

1/ 1	$\gamma_{R.A}$	$\gamma_{R.A}$
------	----------------	----------------





CSE 444 – Parallel RDBMS

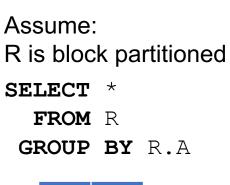
Assume:

SELECT *

FROM R

R is block partitioned

1. Hash shuffle tuples

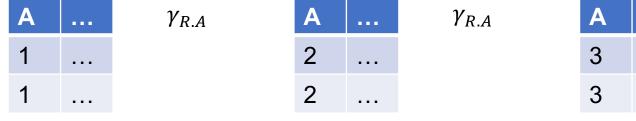


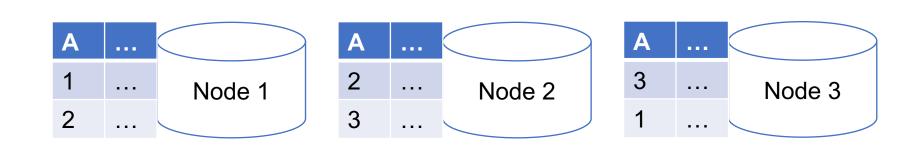
...

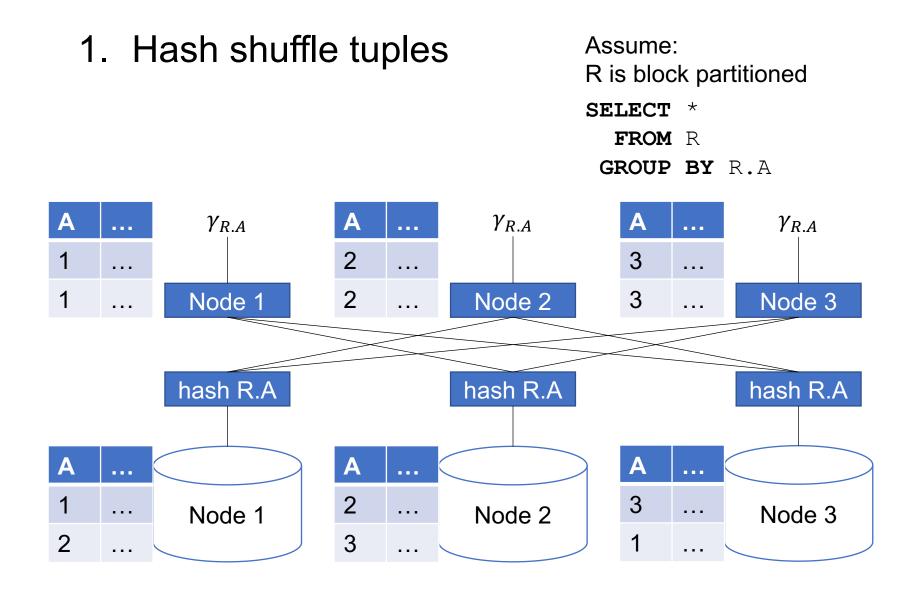
. . .

. . .

 $\gamma_{R,A}$

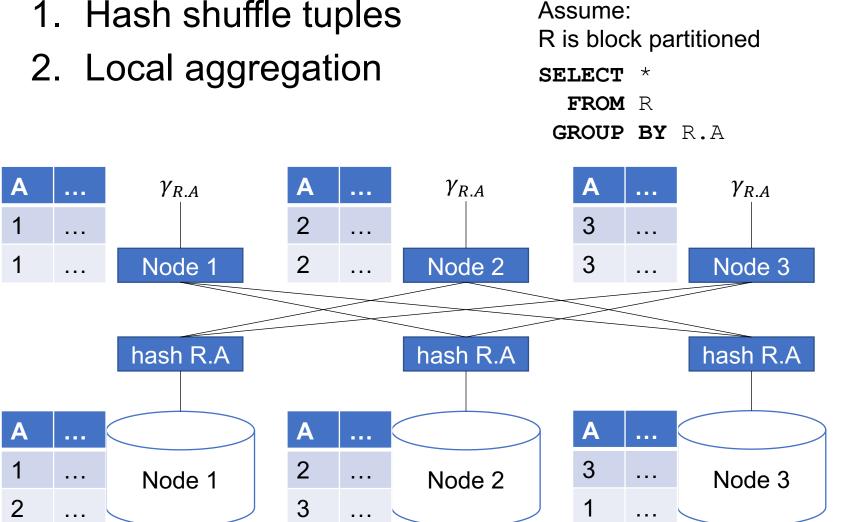






Partitioned Aggregation

1. Hash shuffle tuples



CSE 444 – Parallel RDBMS

Select A, sum(B) from R group by A

- Case 1: R is partitioned on A
 - Do the group-by locally; done.

Select A, sum(B) from R group by A

- Case 1: R is partitioned on A
 - Do the group-by locally; done.
- Case 2: R is partitioned on something else
 - Naïve: reshuffle on A, then do as in case 1

Select A, sum(B) from R group by A

- Case 1: R is partitioned on A
 - Do the group-by locally; done.
- Case 2: R is partitioned on something else
 - Naïve: reshuffle on A, then do as in case 1
 - Better: do a *local* group-by-sum (reduces size), then reshuffle on A and do a second group-by

Select A, sum(B) from R group by A

- Case 1: R is partitioned on A
 - Do the group-by locally; done.
- Case 2: R is partitioned on something else
 - Naïve: reshuffle on A, then do as in case 1
 - Better: do a *local* group-by-sum (reduces size), then reshuffle on A and do a second group-by

 $\begin{aligned} & \gamma_{A,sum(B)}(R_1 \cup R_2 \cup \cdots \cup R_N) \\ &= \gamma_{A,sum(B)}(\gamma_{A,sum(B)}(R_1) \cup \cdots \cup \gamma_{A,sum(B)}(R_N)) \end{aligned}$

Select A, sum(B) from R group by A

- Case 1: R is partitioned on A
 - Do the group-by locally; done.
- Case 2: R is partitioned on something else
 - Naïve: reshuffle on A, then do as in case 1

"Combiners" in MapReduce

 Better: do a *local* group-by-sum (reduces size), then reshuffle on A and do a second group-by

 $\begin{aligned} & \gamma_{A,sum(B)}(R_1 \cup R_2 \cup \cdots \cup R_N) \\ &= \gamma_{A,sum(B)}(\gamma_{A,sum(B)}(R_1) \cup \cdots \cup \gamma_{A,sum(B)}(R_N)) \end{aligned}$

Can we do better?

- Sum?
- Count?
- Avg?
- Max?
- Median?

Can we do better?

- Sum?
- Count?
- Avg?
- Max?
- Median?

Distributive	Algebraic	Holistic
$sum(a_{1}+a_{2}++a_{9})=sum(sum(a_{1}+a_{2}+a_{3})+sum(a_{4}+a_{5}+a_{6})+sum(a_{7}+a_{8}+a_{9}))$	avg(B) = sum(B)/count(B)	median(B)

Can we do better?

- Sum?
- Count?
- Avg?
- Max?
- Median?
- YES

Distributive	Algebraic	Holistic
$sum(a_{1}+a_{2}++a_{9})=sum(sum(a_{1}+a_{2}+a_{3})+sum(a_{4}+a_{5}+a_{6})+sum(a_{7}+a_{8}+a_{9}))$	avg(B) = sum(B)/count(B)	median(B)

Compute partial aggregates before shuffling

Can we do better?

- Sum?
- Count?
- Avg?
- Max?
- Median?
- YES

Distributive	Algebraic	Holistic
$sum(a_{1}+a_{2}++a_{9})=sum(sum(a_{1}+a_{2}+a_{3})+sum(a_{4}+a_{5}+a_{6})+sum(a_{7}+a_{8}+a_{9}))$	avg(B) = sum(B)/count(B)	median(B)

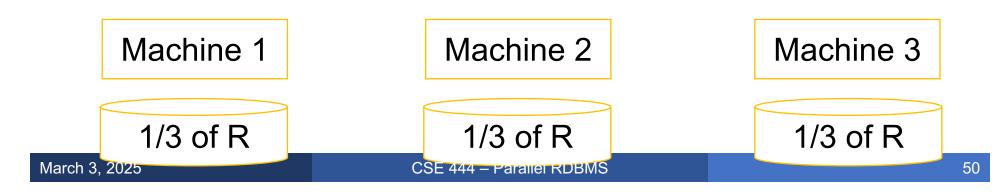
Compute partial aggregates before shuffling

MapReduce implements this as "Combiners"

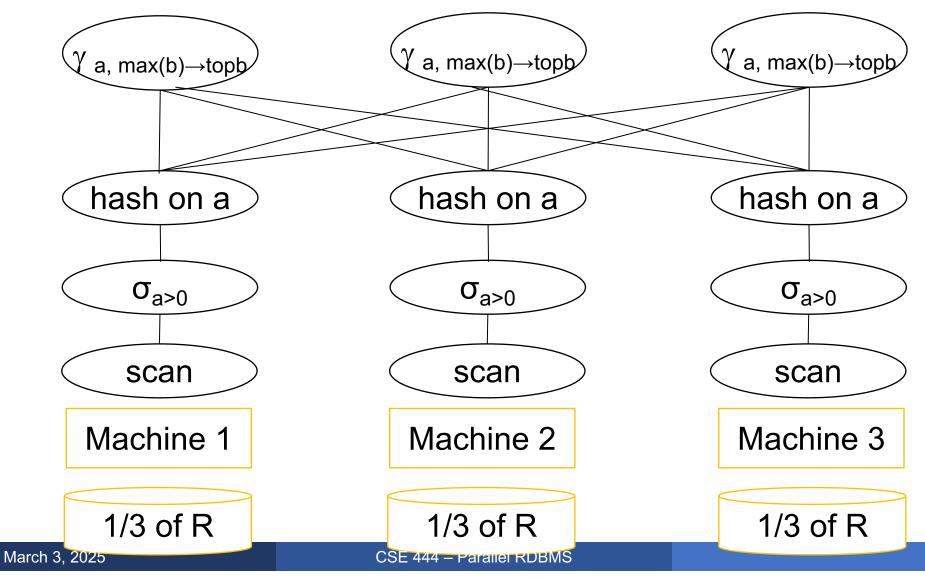
Exercise (<u>www.draw.io</u> is fast!)

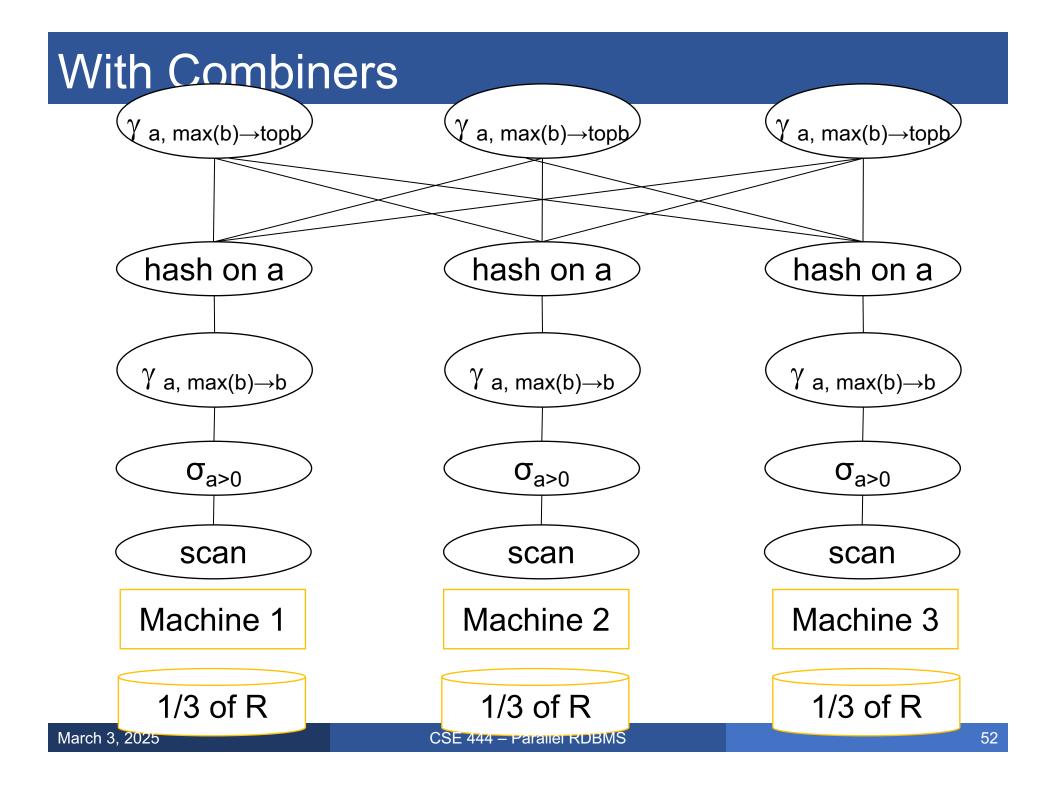
Example Query with Group By

SELECT a, max(b) as topb FROM R WHERE a > 0 GROUP BY a



Without Combiners

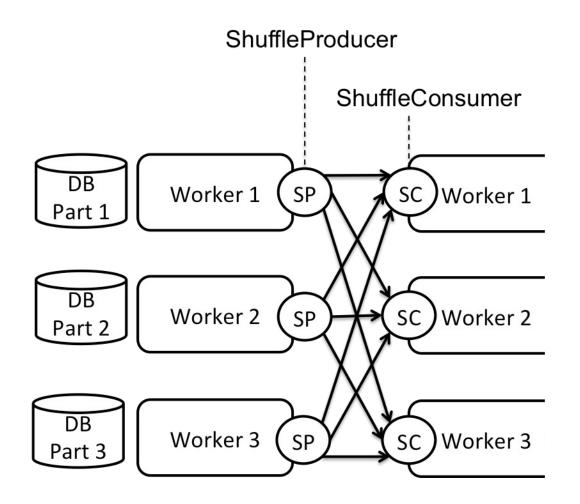


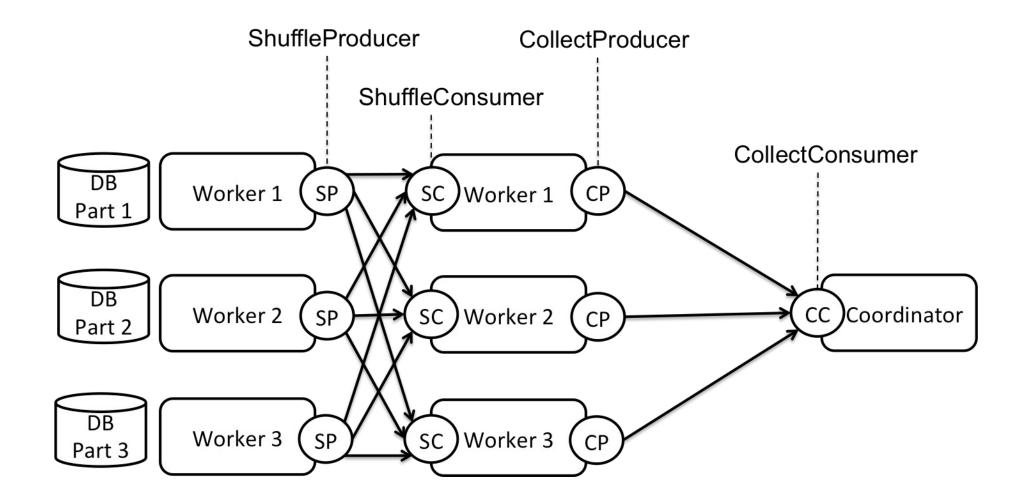


Parallel Query Evaluation

New operator: Shuffle

- Serves to re-shuffle data between processes
 - Handles data routing, buffering, and flow control
- Two parts: ShuffleProducer and ShuffleConsumer
- Producer:
 - Pulls data from child operator and sends to n consumers
 - Producer acts as driver for operators below it in query plan
- Consumer:
 - Buffers input data from n producers and makes it available to operator through getNext() interface





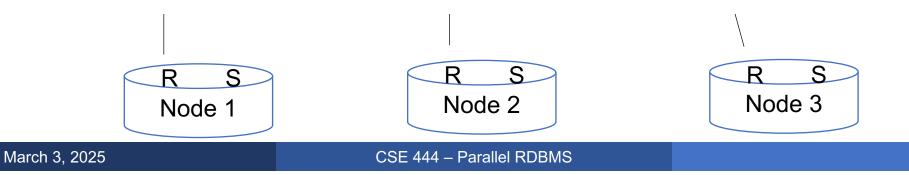
1. Hash shuffle tuples on join attributes

Assume: R and S are block partitioned SELECT * FROM R, S WHERE R.A = S.A

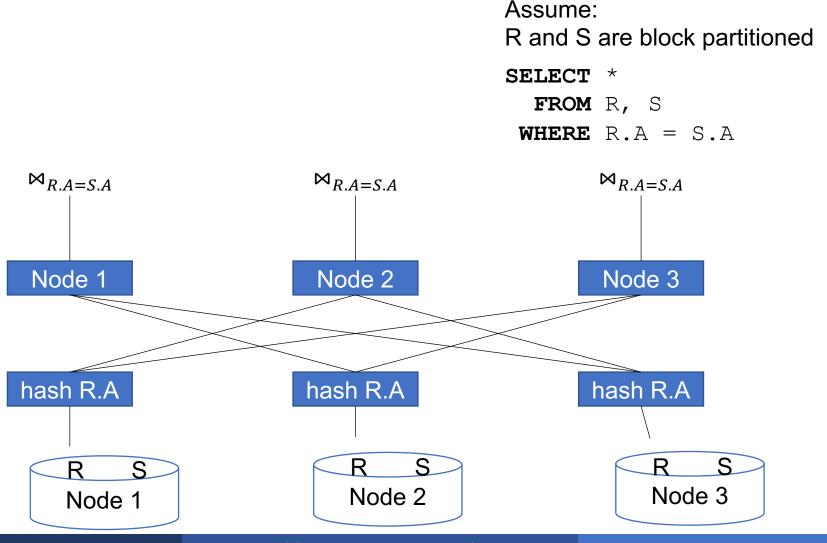
 $\bowtie_{R.A=S.A}$

 $\bowtie_{R.A=S.A}$

 $\bowtie_{R.A=S.A}$



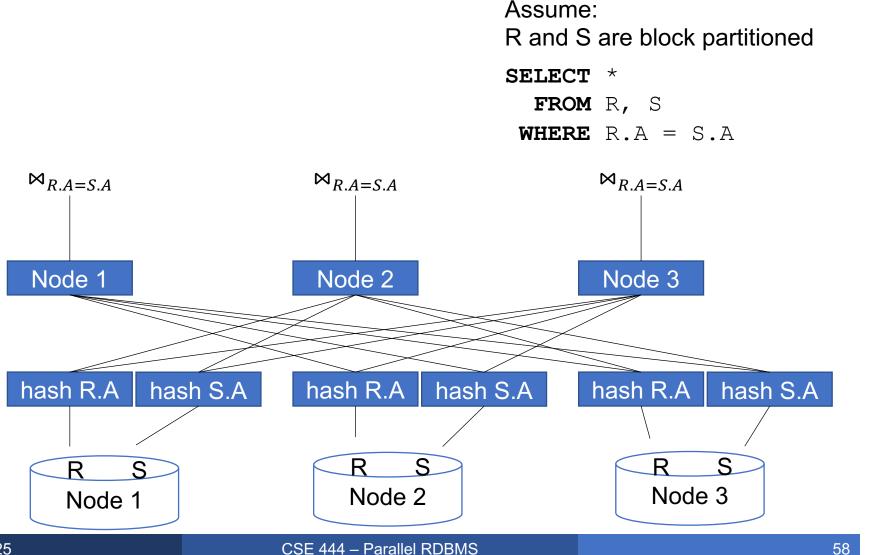
1. Hash shuffle tuples on join attributes



March 3, 2025

CSE 444 – Parallel RDBMS

1. Hash shuffle tuples on join attributes

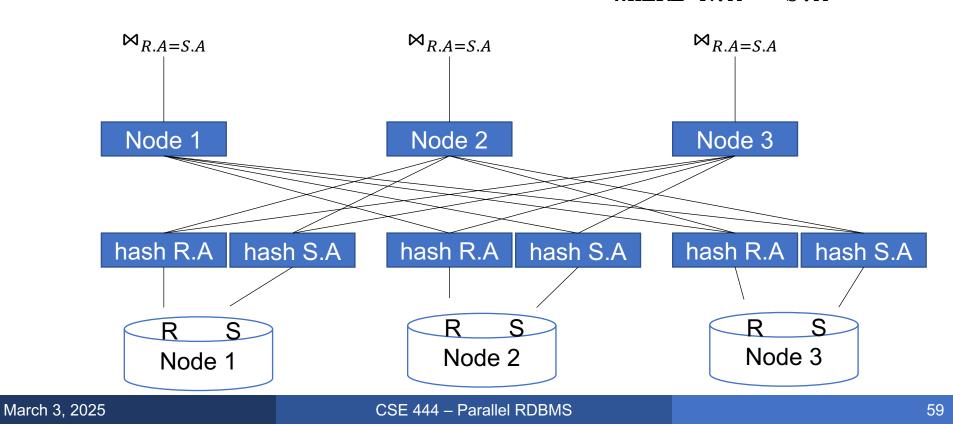


- 1. Hash shuffle tuples on join attributes
- 2. Local join

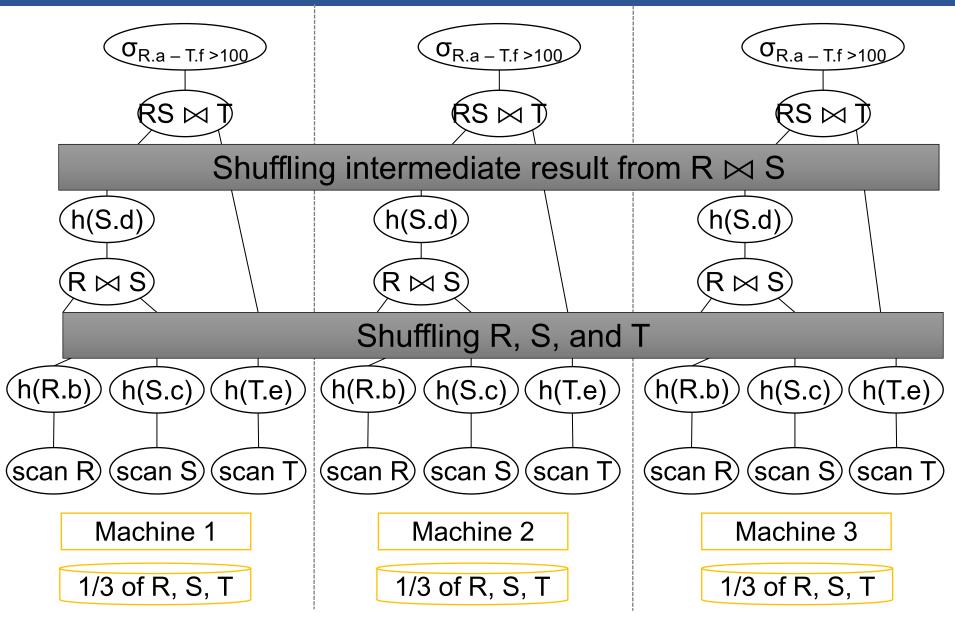
Assume: R and S are block partitioned

SELECT *

FROM R, S WHERE R.A = S.A



Multiple Shuffles



Summary

- With one new operator, we've made SimpleDB an OLAP-ready parallel DBMS!
- Next lecture:
 - Skew handling
 - Algorithm refinements

Speedup and Scaleup

- Consider:
 - Query: $\gamma_{A,sum(C)}(R)$
 - Runtime: dominated by reading chunks from disk
- If we double the number of nodes P, what is the new running time?
- If we double both P and the size of R, what is the new running time?

Speedup and Scaleup

- Consider:
 - Query: $\gamma_{A,sum(C)}(R)$
 - Runtime: dominated by reading chunks from disk
- If we double the number of nodes P, what is the new running time?
 - Half (each server holds $\frac{1}{2}$ as many chunks)
- If we double both P and the size of R, what is the new running time?

Speedup and Scaleup

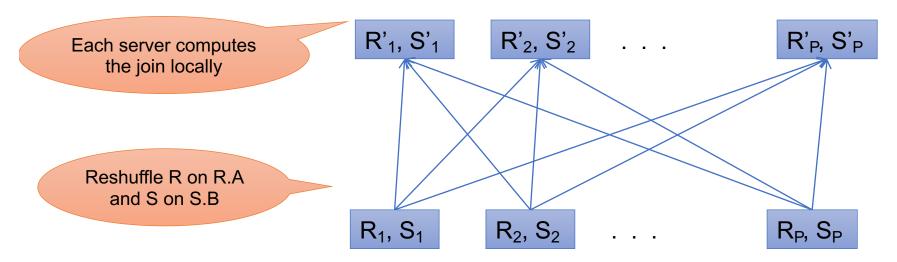
- Consider:
 - Query: $\gamma_{A,sum(C)}(R)$
 - Runtime: dominated by reading chunks from disk
- If we double the number of nodes P, what is the new running time?
 - Half (each server holds 1/2 as many chunks)
- If we double both P and the size of R, what is the new running time?
 - **Same** (each server holds the same # of chunks)

Parallel Join: $R \bowtie_{A=B} S$

- Data: R(K1,A, C), S(K2, B, D)
- Query: R(<u>K1</u>,A,C) ⋈ S(<u>K2</u>,B,D)

Parallel Join: $R \bowtie_{A=B} S$

Data: R(<u>K1</u>,A, C), S(<u>K2</u>, B, D)
Query: R(<u>K1</u>,A,C) ⋈ S(<u>K2</u>,B,D)



Initially, both R and S are horizontally partitioned on K1 and K2

CSE 444 – Parallel RDBMS

Parallel Join: $R \bowtie_{A=B} S$

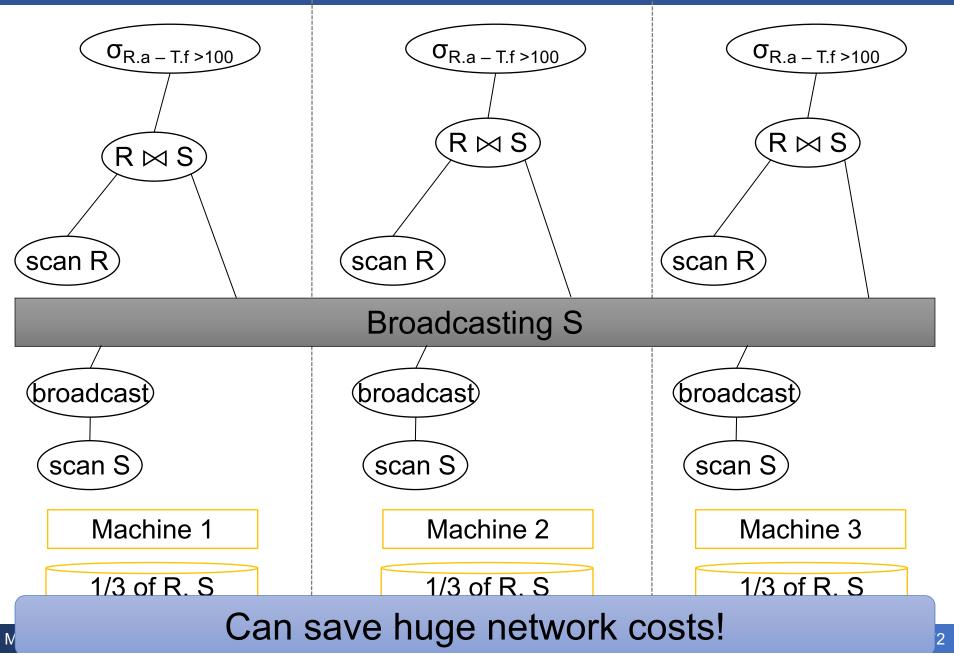
- Step 1
 - Every server holding any chunk of R partitions its chunk using a hash function h(t.A) mod P
 - Every server holding any chunk of S partitions its chunk using a hash function h(t.B) mod P
- Step 2:
 - Each server computes the join of its local fragment of R with its local fragment of S

Optimization for Small Relations

When joining R and S

- If |R| >> |S|
 - Leave R where it is
 - Replicate entire S relation across nodes
- Also called a small join or a broadcast join

Broadcast Join Example



Justin Biebers Re-visited

Skew:

- Some partitions get more input tuples than others Reasons:
 - Range-partition instead of hash
 - Some values are very popular: "heavy hitters"
 - Selection before join with different selectivities
- Some partitions generate more output tuples than others

Some Skew Handling Techniques

If using range partition:

- Ensure each range gets same number of tuples
- E.g.: $\{1, 1, 1, 2, 3, 4, 5, 6\} \rightarrow [1,2]$ and [3,6]
- Eq-depth v.s. eq-width histograms

Some Skew Handling Techniques

Create more partitions than nodes

- And be smart about scheduling the partitions
 - E.g. One node ONLY does Justin Biebers
- Note: MapReduce uses this technique

Some Skew Handling Techniques

Use subset-replicate (a.k.a. "skewedJoin")

- Given R ⋈_{A=B} S
- Given a heavy hitter value R.A = 'v' (i.e. 'v' occurs very many times in R)
- Partition R tuples with value 'v' across all nodes e.g. block-partition, or hash on other attributes
- Replicate S tuples with value 'v' to all nodes
- R = the build relation
- S = the probe relation