CSE 444: Database Internals

Section 6:
Transactions



Today

e Serializability and Conflict Serializability
— Precedence graph

* Two-Phase Locking
— Strict two phase locking



Problem 1: Serializability and

Locking Jwratss

* Serializability
* Is this schedule conflict serializab| * Conflict Serializability?

R, (A)
R, (B)
Cl
R,(B)
W (B)



Review: (Conflict) Serializable
Schedule

* Aschedule is serializable if it is equivalent to a serial schedule

* Aschedule is conflict serializable if it can be transformed into
a serial schedule by a series of swappings of adjacent
non-conflicting actions




Example:

r1(A);, wi(A); ra(A);

Wy (A); r4(B);

w(B); ra(B); wa(B)

r1(A); wi(A); ra(A);

Wy (A);

r{(B);

w1(B); ra(B); wa(B)

r1(A);, wi(A); ry(B);

r(A); ol :

, 12(B); wo(B)

r1(A); wq(A); r1(B); wy(B); ra(A); wa(A); ra(B); wo(B)




Problem 1: Serializability and
Locking

e |s this schedule conflict serializable?

R,(A)

R, (B)

Ry(B)

W (B)



* No.

* The precedence graph contains a cycle

R,(B) W,(B)

W, (A), R (A)



* SO, use 2PL ...
1 Original schedule below

R, (A)
R, (B)
Cl
R,(B)
W (B)



* SO, use 2PL ...

1 Original schedule below What is
* Two Phase Locking
 Strict Two Phase Locking?

R,(A)
R, (B)
Cl
R, (B)
W,(B)



Review:

(Strict) Two Phase Locking (2PL)

The 2PL rule:
In every transaction, all lock requests must
precede all unlock requests

Strict 2PL:
All locks held by a transaction are released when

the transaction is completed

— Ensures that schedules are recoverable
* Transactions commit only after all transactions whose
changes they read also commit

— Avoids cascading rollbacks




e How can 2PL ensure a conflict-serializable

schedule?
1 Original schedule below

R,(A)

R, (B)

Ry(B)

W (B)






L,(A) : Block



L,(A) : Block



L,(A) : Block

L.(A) : Granted
R, (A)
L,(B)
R,(B)
U.(A)
u,(B)

C

1



L,(A) : Block

Is this strict 2PL?

No, release locks after commit

\

L.(A) : Granted
R,(A)
L,(B)
R,(B)

U, (A)
U, (B)
C

1



* That example ended in a serial schedule, 2PL

doesn’t necessarily require that
] Here’s an example that doesn’t become serial

R, (A)

R, (B)

Ro(B)
W,(8)



L,(A)
Ro(A)
W, (A)
L,(B) If we get the lock on B first, we have
completed the locking phase, and can
U,(A) .
0 start unlocking




L(A)
Ry(A)
W,(A)
L,(B)
U,(A)

L.(A
Allowing for interleaving can 1(A)
help performance Rl(A)

L,(B): Block




L,(A)
R,(A)
W, (A)
L,(B)
U (A)
L,(A)
R,(A)
L,(B): Block
R,(B)
W, (B)
u,(8)



L,(A)
R (A)
W (A)
L,(B)
u,(A)

R,(B)
W, (8)
u,(B)

We have unlocks in a transaction before
committing, so this isn’t strict 2 PL

R, (A)
L,(B): Block

L,(B): Granted
R,(B)
U, (A)
u,(B)
C



Common 2PL Misconceptions

— Remember, only one transaction can hold a lock for
an element at once

— In 2PL, within each transaction there must be a
growing (lock acquiring phase) followed by a
shrinking (unlocking) phase
e Before unlocking, all locks must be be granted,

not just requested

— Both 2PL and Strict 2PL ensure conflict serializability,
neither guarantee a serial schedule or prevent
deadlocks




Lab 3 - Transactions

e NO STEAL / FORCE buffer management po\'\cy

o You shouldn't evict d'\rTy (updaTed) pages from the buffer poo\ to disk if
The\/ are locked b\/ an uncommitted transaction. (this is NO STEAL)D

o on fransaction commit, you should force dirty pages to disk. (eg, write
the pages out) (this is FORCE)

e Recommend - \ocK\ng at page level

o you can acquire locks in BufferPoo\_geTPageO. instead of addmg calls to

each of your operators. Since we are implemmenting strict 2PL, we release locks
after transaction completes.

o Might have to change previous implementations to access pages using

BufferPoo\.geTPageO



Lab 3 - Transactions (contd.)

e You need to implement shared and exclusive |ocks

o Before read, it must have a shared lock or exclusive lock
o Before write, it must have an exclusive lock
o Mu\ﬂp\e Transactions can have a shared lock

o On\y one transaction may have an exclusive lock on an obJ'ec’r

o If fransaction t is the on\y Transaction ho\d'\ng a shared lock on an
obJ'ecT o0, t may upgrade its lock on o to an exclusive lock when it needs to
writel

You need to implement strict two-phase \ockmg

o transactions should acquire the appropyriate T\/pe of lock on any obJec‘r
before accessing that obJecT

o transaction shouldnt release any locks until after the transaction
commits.



Lab 3 - Transactions (contd.)

e You will need to implement a LockManager class that will

hold data structures o Keep Track of which locks each
Transaction holds and that check to see if a lock should be
gmmed To a Transaction when it is requeered.

e Read about Synchronization in Java, and use the
synchronized keyword in appropriate places in LockManager
e You will have 1o also throw appropriate exceptions like

T[angacﬂonAboxjedExcep’r\on when transaction aborts




Lab 3 - Transactions (contd)
Synch[on\zed method

On\y one thread executing that method per instance

public synchronized voild releaseLock()

public void acquireLock () { 5¥! \Ch!O! !\ZEd block -

// wait for lock Only one thread executing
synchronized (this) | m% block of code at one
ime

// update state
paate stat Usuo\\\\/ used 1o updoﬁe

} that object's state
) synchronous\y



Lab 3 - Transactions (contd.)

e Handling deadlocks
o implement a simple fimeout policy that aborts a transaction if it has
not completed after a given period of time

e ‘\mp\emem Q cyc\e—de’recﬂon ina dependency gmph data structure, if
cyc\e exists when granting a new lock abort somefh\ng.

e Design Choices:
o Locking Granu\arﬁyz page-level vs tuple-level (our fests assume
page-level)
o Deadlock Detection: timeout vs dependency graphs
o Deadlock Resolution: aborting \/ourse\F vs aborting others

e Read the spec careﬂn\y for more details about various methods and
edge cases .



Problem 2: Timestamp-based
Concurrency Control



Timestamp-based Concurrency
Control

« Some transaction, T.
« Some element (tuple/page), X.

e TS(T) -timestamp for transaction T
« Stays constant for all of T's operations

e WT(X) — latest write timestamp for X
o Set WT(X)=TS(T)

 RT(X) — latest read timestamp for X
o Set RT(X)=TS(T)

e C(X)—- X's value has been committed
« 1iftrue, O if not



Timestamp-based Concurrency
Control

e Actions for transaction T

e Grant a read/write request for a transaction

* Abort (in case T violates physical reality — late actions)

* Delay (make the Grant or Abort decision later)

 When writing, the change is always tentative until we

decide to commit. For this, we use a commit bit C to
keep track if the transaction that last wrote X has
committed

* |gnore Thomas Write Rule — ignore outdated writes



Timestamp-based Concurrency
Control - Four Rules

* Rule 1: Read requeston X by T

STAIERT(T) ... START(U) ... wu(;<) . erX)

— TS(T) < WT(X), abort, (read too late)

— TS(T) >= WT(X), physically realizable
 If C=1, grant, update RT(X)
|IfC=0,delay T



Timestamp-based Concurrency

Control - Four Rules
* Rule 2: Write requeston X by T

STAI%T(T) ... START(U) ... rU(XE) . wT:(X)

— TS(T) < RT(X) (write too late)
e Abort



— TS(T) >= RT(X), physically realizable
e TS(T) >= WT(X)
— then grant, update WT(X), set C=0 (as it’s not
committed yet)

STAI%T(T) ... START(V) ... wV()E() . wTE(X)

* TS(T) < WT(X)
— IfC=1, don’t write X at all! (Thomas Write Rule —
ignore outdated writes)
— IfC=0, delay



Timestamp-based Concurrency

Control - Four Rules

* Rule 3: Commit request by T
— Set C=1 forall Xwrittenby T
— Allow waiting transactions to proceed

* Rule 4: Abort transaction T
— Check if the waiting transactions can proceed
now.



Summary

Transaction wants to READ element X
If WT(X) > TS(T) then ROLLBACK
Else If C(X) = false, then WAIT
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to WRITE element X
If RT(X) > TS(T) then ROLLBACK
Else if WT(X) > TS(T)
Then If C(X) = false then WAIT
else IGNORE write (Thomas Write Rule)
Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false




Timestamp-based
Concurrency Control

Two transactions get started.
* Start(Tl) -> Start(Tz)



Timestamp-based
Concurrency Control

What will happen at the last request?
° Start(Tl) -> Start(Tz) -> RTl(A) -> RTZ(A) -> WTl(B) -> WTZ(B)



Timestamp-based
Concurrency Control

What will happen at the last request?
° Start(Tl) -> Start(Tz) -> RTl(A) -> RTZ(A) -> WTl(B) -> WTZ(B)
— ACCEPTED



Timestamp-based
Concurrency Control

What will happen at the last request?
° Start(Tl) -> Start(Tz) -> RTl(A) -> RTZ(A) -> WTl(B) -> WTZ(B)
— ACCEPTED

* Start(T,) -> Start(T ) -> RTZ(A) -> Commit_, -> R_ (A) ->W__(A)



Timestamp-based
Concurrency Control

What will happen at the last request?
° Start(Tl) -> Start(Tz) -> RTl(A) -> RTZ(A) -> WTl(B) -> WTZ(B)
— ACCEPTED

* Start(T,) -> Start(T ) -> RTZ(A) -> Commit_, -> R_ (A) ->W__(A)
— ABORT T, because R_,(A) precedes



Problem 2: Timestamp-based
Concurrency Control



| o | 1 | m | x| v |z

R, (X)



R, (X)

R,(X)



R, (X)
R,(X)




| o | 1 | m | x| v |z

R, (X) RT=1
R,(X) RT=2
W, (X)



| o | 1 | m | x| v |z

R, (X) RT=1
R,(X) RT=2
W, (X)




RT=0,WT= RT=0,WT RT=0,WT

0,C=1 -0,C=1 =0,C=1
R, (X) RT=1
R, (X) RT=2
W, (X) WT=2, C=0

W, (X)



RT=0,WT= RT=0,WT RT=0,WT

0,C=1 =0,C=1 =0,C=1
R, (X) RT=1
R, (X) RT=2
W, (X) WT=2, C=0

W_(X): abort



| 2 | 1 | ™ x| v |z

R, (X) RT=1
R, (X) RT=2
W,(X) WT=2, C=0

W_(X): abort




RT=0,WT= RT=0,WT RT=0,WT

0,C=1 =0,C=1 =0,C=1
R, (X) RT=1
R, (X) RT=2
W,(X) WT=2, C=0

W_(X): abort

W,(Y)



| 7 | 1 | ™ x| v |z

R, (X) RT=1
R, (X) RT=2
W, (X) WT=2, C=0

W_(X): abort

W,(Y) WT=3, C=0




RT=0,WT= RT=0,WT RT=0,WT

0,C=1 =0,C=1 =0,C=1
R,(X) RT=1
R,(X) RT=2
W, (X) WT=2, C=0
W, (X): abort
W, (Y) WT=3, C=0

W,(Y)



RT=0,WT= RT=0,WT RT=0,WT

0,C=1 =0,C=1 =0,C=1
R,(X) RT=1
R,(X) RT=2
W, (X) WT=2, C=0
W_(X): abort
W, (Y) WT=3, C=0

W,(Y): delay



| n | 1l | ™ x| v |z

Rl(X) RT=1
RZ(X) RT=2
WZ(X) WT=2, C=0
W_(X): abort
W3(Y) WT=3, C=0

W, (Y): delay




RT=0,WT= RT=0,WT RT=0,WT

0,C=1 =0,C=1 =0,C=1
Rl(X) RT=1
RZ(X) RT=2
WZ(X) WT=2, C=0
W_(X): abort
W3(Y) WT=3, C=0

W,(Y): delay



RT=0,WT= RT=0,WT RT=0,WT

0,C=1 =0,C=1 =0,C=1
Rl(X) RT=1
RZ(X) RT=2
WZ(X) WT=2, C=0
Wl(X): abort
W3(Y) WT=3, C=0

W, (Y): delay



R,(X)
R,(X)
W, (X)
W_(X): abort
W,(Y): delay

RT=0,WT= RT=0,WT RT=0,WT
0,C=1 =0,C=1 =0,C=1
RT=1
RT=2
WT=2, C=0
W, (Y) WT=3, C=0




RT=0,WT= RT=0,WT RT=0,WT

0,C=1 =0,C=1 =0,C=1
R,(X) RT=1
R,(X) RT=2
W, (X) WT=2, C=0
Wl(X): abort
W, (Y) WT=3, C=0
W, (Y): delay
C, C=1
Ignore W_(Y)

and proceed



| n | m | ™ | x| v |z

Ignore W,(Y)
and proceed

W,(2)



| n | m | ™ | x| v |z

Ignore W,(Y)
and proceed

W,(2) WT=4,




| n | m | ™ | x| v |z

Ignore W,(Y)
and proceed

W,(2) WT=4,
C=0



| n | m | ™ | x| v |z

Ignore W,(Y)
and proceed

W, (2) WT=4,C=0

R, (2)



proceed

W, (2) WT=4,C=0

C C=1
R,(Z): abort



Timestamp-based Concurrency
Control

Questions?



Multiversion Concurrency
Control

e Maintains old versions of database elements
in addition the current version in the
database itself.

 Theidea is to allow reads that would
otherwise result in an abort (as the current
version was written by future transaction)



Problem with Timestamp-Based

Scheduling
__---

RT=0
WT=0

R,(A) RT =150

W, (A) WT = 150

R,(A) RT = 200
W, (A) WT = 200

R,(A)

Abort

R,(A)  RT=225

Had to abort because
WT(A) is greater than Would have been useful if |

my own timestamp had access to an old version
of A (from 150)...



Multiversion Timestamps
-—--“-!-m

RT=0
WT=0
R,(A) RT =
150
W,(A) Create
RZ(A) RT=200
W,(A) Create
R,(A) RT=175

RT=225

Don’t have to abort

Just read a previous value of
A




