
CSE 444: Database Internals

Section 6: 
Transactions



Today

• Serializability and Conflict Serializability 
– Precedence graph

• Two-Phase Locking
– Strict two phase locking



Problem 1: Serializability and 
Locking

• Is this schedule conflict serializable? 

T
0

T
1

R
0
(A)

W
0
(A)

R
1
(A)

R
1
(B)

C
1

R
0
(B)

W
0
(B)

C
0

What is
•  Serializability
•  Conflict Serializability?



Review: (Conflict) Serializable 
Schedule

• A schedule is serializable if it is equivalent to a serial schedule

• A schedule is conflict serializable if it can be transformed into 
a serial schedule by a series of swappings of adjacent 
non-conflicting actions

4





Problem 1: Serializability and 
Locking

• Is this schedule conflict serializable? 

T
0

T
1

R
0
(A)

W
0
(A)

R
1
(A)

R
1
(B)

C
1

R
0
(B)

W
0
(B)

C
0



• No.

• The precedence graph contains a cycle

T
0

T
1

  R
1
(B)

,
 W

0
(B)

W
0
(A), R

1
(A)



• So, use 2PL ...
❑ Original schedule below

T
0

T
1

R
0
(A)

W
0
(A)

R
1
(A)

R
1
(B)

C
1

R
0
(B)

W
0
(B)

C
0



• So, use 2PL ...
❑ Original schedule below

T
0

T
1

R
0
(A)

W
0
(A)

R
1
(A)

R
1
(B)

C
1

R
0
(B)

W
0
(B)

C
0

What is
•  Two Phase Locking
•  Strict Two Phase Locking?



Review: 
(Strict) Two Phase Locking (2PL)

The 2PL rule:
In every transaction, all lock requests must 

precede all unlock requests

Strict 2PL: 
All locks held by a transaction are released when 

the transaction is completed
– Ensures that schedules are recoverable

• Transactions commit only after all transactions whose 
changes they read also commit

– Avoids cascading rollbacks
10



• How can 2PL ensure a conflict-serializable 
schedule?
❑ Original schedule below

T
0

T
1

R
0
(A)

W
0
(A)

R
1
(A)

R
1
(B)

C
1

R
0
(B)

W
0
(B)

C
0



T
0

T
1

L
0
(A)

R
0
(A)

W
0
(A)



T
0

T
1

L
0
(A)

R
0
(A)

W
0
(A)

L
1
(A) : Block



T
0

T
1

L
0
(A)

R
0
(A)

W
0
(A)

L
1
(A) : Block

L
0
(B)

R
0
(B)

W
0
(B)

U
0
(A)

U
0
(B)

C
0



T
0

T
1

L
0
(A)

R
0
(A)

W
0
(A)

L
1
(A) : Block

L
0
(B)

R
0
(B)

W
0
(B)

U
0
(A)

U
0
(B)

C
0

L
1
(A) : Granted

R
1
(A)

L
1
(B)

R
1
(B)

U
1
(A)

U
1
(B)

C
1



T
0

T
1

L
0
(A)

R
0
(A)

W
0
(A)

L
1
(A) : Block

L
0
(B)

R
0
(B)

W
0
(B)

U
0
(A)

U
0
(B)

C
0

L
1
(A) : Granted

R
1
(A)

L
1
(B)

R
1
(B)

U
1
(A)

U
1
(B)

C
1

Is this strict 2PL?

No, release locks after commit



T
0

T
1

R
0
(A)

W
0
(A)

R
1
(A)

R
1
(B)

C
1

R
0
(B)

W
0
(B)

C
0

• That example ended in a serial schedule, 2PL 
doesn’t necessarily require that
❑ Here’s an example that doesn’t become serial



T
0

T
1

L
0
(A)

R
0
(A)

W
0
(A)

L
0
(B)

U
0
(A)

If we get the lock on B first, we have 
completed the locking phase, and can 

start unlocking



T
0

T
1

L
0
(A)

R
0
(A)

W
0
(A)

L
0
(B)

U
0
(A)

L
1
(A)

R
1
(A)

L
1
(B): Block

Allowing for interleaving can 
help performance 



T
0

T
1

L
0
(A)

R
0
(A)

W
0
(A)

L
0
(B)

U
0
(A)

L
1
(A)

R
1
(A)

L
1
(B): Block

R
0
(B)

W
0
(B)

U
0
(B)

C
0



T
0

T
1

L
0
(A)

R
0
(A)

W
0
(A)

L
0
(B)

U
0
(A)

L
1
(A)

R
1
(A)

L
1
(B): Block

R
0
(B)

W
0
(B)

U
0
(B)

C
0

L
1
(B): Granted

R
1
(B)

U
1
(A)

U
1
(B)

C
1

We have unlocks in a transaction before 
committing, so this isn’t strict 2 PL



Common 2PL Misconceptions

– Remember, only one transaction can hold a lock for 
an element at once

– In 2PL, within each transaction there must be a 
growing (lock acquiring phase) followed by a 
shrinking (unlocking) phase
• Before unlocking, all locks must be be granted, 

not just requested
– Both 2PL and Strict 2PL ensure conflict serializability, 

neither guarantee a serial schedule or prevent 
deadlocks

22



Lab 3 - Transactions 
● NO STEAL / FORCE buffer management policy 

○ you shouldn’t evict dirty (updated) pages from the buffer pool to disk if 
they are locked by an uncommitted transaction.  (this is NO STEAL ) 

○ on transaction commit, you should force dirty pages to disk.  (e.g., write 
the pages out) (this is FORCE ) 

● Recommend - locking at page level 

○ you can acquire locks in BufferPool.getPage(),  instead of adding calls to 
each of your operators. Since we are implementing strict 2PL, we release locks 
after transaction completes.

○ Might have to change previous implementations to access pages using 
BufferPool.getPage()



Lab 3 - Transactions (contd.) 
●  You need to implement shared  and exclusive  locks 

○ Before read, it must have a shared lock or exclusive lock
○ Before write, it must have an exclusive lock 
○ Multiple transactions can have a shared lock 
○ Only one transaction may have an exclusive lock on an  object 
○ If transaction t is the only transaction holding a shared lock on an 

object o, t may upgrade its lock on o to an exclusive lock when it needs to 
write!

● 
   You need to implement strict two-phase locking  

○ transactions should acquire the appropriate type of lock on any object 
before accessing that object

 
○ transaction shouldn’t release any locks until after the transaction 

commits.



Lab 3 - Transactions (contd.)
●  You will need to implement a LockManager class  that will  

hold data structures to keep track of which locks each  
transaction holds and that check to see if a lock should be  
granted to a transaction when it is requested. 

●  Read about Synchronization  in Java, and use the  
synchronized  keyword in appropriate places in LockManager  

●  You will have to also throw appropriate exceptions like  
TransactionAbortedException  when transaction aborts



Lab 3 - Transactions (contd.)

public synchronized void releaseLock()

public void acquireLock() {

// wait for lock

synchronized (this) {

// update state

}

}

Synchronized method : 
Only one thread executing that method per instance

Synchronized block : 
Only one thread executing 
that block of code at one 
time
Usually used to update 
that object’s state 
synchronously



Lab 3 - Transactions (contd.) 
●  Handling deadlocks 

○   implement a simple timeout policy that aborts a transaction if it has 
not completed after a given period of time 

○ implement a cycle-detection in a dependency graph data structure, if 
cycle exists when granting a new lock abort  something. 

●  Design Choices: 
○   Locking Granularity: page-level vs tuple-level (our tests assume 

page-level) 
○   Deadlock Detection: timeout vs dependency graphs 
○   Deadlock Resolution: aborting yourself vs aborting others 

● Read the spec carefully for more details about various methods and 
edge cases .



Problem 2: Timestamp-based 
Concurrency Control



Timestamp-based Concurrency 
Control

• Some transaction, T.
• Some element (tuple/page), X.

• TS(T)  - timestamp for transaction T
• Stays constant for all of T’s operations

• WT(X) – latest write timestamp for X
• Set WT(X) = TS(T)

• RT(X) – latest read timestamp for X
• Set RT(X) = TS(T)

• C(X) – X’s value has been committed
• 1 if true, 0 if not



Timestamp-based Concurrency 
Control

• Actions for transaction T
• Grant a read/write request for a transaction
• Abort (in case T violates physical reality – late actions)
• Delay (make the Grant or Abort decision later)

• When writing, the change is always tentative until we 
decide to commit. For this, we use a commit bit C to 
keep track if the transaction that last wrote X has 
committed

• Ignore Thomas Write Rule – ignore outdated writes



Timestamp-based Concurrency 
Control - Four Rules

• Rule 1: Read request on X by T

– TS(T) < WT(X), abort, (read too late)

– TS(T) >= WT(X), physically realizable
• If C = 1, grant, update RT(X) 
• If C = 0, delay T



Timestamp-based Concurrency 
Control - Four Rules

• Rule 2: Write request on X by T

– TS(T) < RT(X) (write too late)
• Abort



– TS(T) >= RT(X),  physically realizable
• TS(T) >= WT(X)

– then grant, update WT(X), set C = 0 (as it’s not 
committed yet)

• TS(T) < WT(X)
–  If C = 1, don’t write X at all! (Thomas Write Rule – 

ignore outdated writes)
–  If C = 0, delay



Timestamp-based Concurrency 
Control - Four Rules

• Rule 3: Commit request by T
– Set C = 1 for all X written by T
– Allow waiting transactions to proceed

• Rule 4: Abort transaction T
– Check if the waiting transactions can proceed 

now.



Summary



Timestamp-based 
Concurrency Control 

Two transactions get started.
• Start(T

1
) -> Start(T

2
)



Timestamp-based 
Concurrency Control 

What will happen at the last request?
• Start(T

1
) -> Start(T

2
) -> R

T1
(A) -> R

T2
(A) -> W

T1
(B) -> W

T2
(B)



Timestamp-based 
Concurrency Control 

What will happen at the last request?
• Start(T

1
) -> Start(T

2
) -> R

T1
(A) -> R

T2
(A) -> W

T1
(B) -> W

T2
(B) 

– ACCEPTED 



Timestamp-based 
Concurrency Control 

What will happen at the last request?
• Start(T

1
) -> Start(T

2
) -> R

T1
(A) -> R

T2
(A) -> W

T1
(B) -> W

T2
(B) 

– ACCEPTED 

• Start(T
1
) -> Start(T

2
) -> R

T2
(A) -> Commit

T2
 -> R

T1 
(A) -> W

T1
(A)



Timestamp-based 
Concurrency Control 

What will happen at the last request?
• Start(T

1
) -> Start(T

2
) -> R

T1
(A) -> R

T2
(A) -> W

T1
(B) -> W

T2
(B) 

– ACCEPTED 

• Start(T
1
) -> Start(T

2
) -> R

T2
(A) -> Commit

T2
 -> R

T1 
(A) -> W

T1
(A)

– ABORT T
1 

because R
T2

(A) precedes



Problem 2: Timestamp-based 
Concurrency Control



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

R
1
(X)



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

R
1
(X) RT=1

R
2
(X)



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

R
1
(X) RT=1

R
2
(X)

1. Physically realizable: 
TS(T

1
) >= WT(X)

2. C = 1: grant request

3. Update RT : TS(T
1
) > RT(X)



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

R
1
(X) RT=1

R
2
(X) RT=2

W
2
(X)



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

R
1
(X) RT=1

R
2
(X) RT=2

W
2
(X)

1. Physically realizable: 
TS(T

2
) >= WT(X)

2. C = 1: grant request

3. Update WT



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT = 
0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

R
1
(X) RT=1

R
2
(X) RT=2

W
2
(X) WT=2, C=0

W
1
(X)



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT = 
0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

R
1
(X) RT=1

R
2
(X) RT=2

W
2
(X) WT=2, C=0

W
1
(X): abort



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT = 
0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

R
1
(X) RT=1

R
2
(X) RT=2

W
2
(X) WT=2, C=0

W
1
(X): abort

1. NOT Physically realizable: 
TS(T

1
) < RT(X)

Abort/rollback



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT = 
0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

R
1
(X) RT=1

R
2
(X) RT=2

W
2
(X) WT=2, C=0

W
1
(X): abort

W
3
(Y)



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT = 
0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

R
1
(X) RT=1

R
2
(X) RT=2

W
2
(X) WT=2, C=0

W
1
(X): abort

W
3
(Y) WT=3, C=0

1. Physically realizable: 
TS(T

3
) >= RT(Y) and TS(T

3
) >= WT(Y)

2. Update WT and C (not committed yet)



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT = 
0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

R
1
(X) RT=1

R
2
(X) RT=2

W
2
(X) WT=2, C=0

W
1
(X): abort

W
3
(Y) WT=3, C=0

W
2
(Y)



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT = 
0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

R
1
(X) RT=1

R
2
(X) RT=2

W
2
(X) WT=2, C=0

W
1
(X): abort

W
3
(Y) WT=3, C=0

W
2
(Y): delay



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT = 
0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

R
1
(X) RT=1

R
2
(X) RT=2

W
2
(X) WT=2, C=0

W
1
(X): abort

W
3
(Y) WT=3, C=0

W
2
(Y): delay

1. Physically realizable: 
TS(T

2
) >= RT(Y)  although TS(T

2
) < WT(Y)

2. We could not apply Thomas’ write rule (ignore W
2
(Y)) since C=0



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT = 
0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

R
1
(X) RT=1

R
2
(X) RT=2

W
2
(X) WT=2, C=0

W
1
(X): abort

W
3
(Y) WT=3, C=0

W
2
(Y): delay

C
3



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT = 
0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

R
1
(X) RT=1

R
2
(X) RT=2

W
2
(X) WT=2, C=0

W
1
(X): abort

W
3
(Y) WT=3, C=0

W
2
(Y): delay

C
3

C=1



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT = 
0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

R
1
(X) RT=1

R
2
(X) RT=2

W
2
(X) WT=2, C=0

W
1
(X): abort

W
3
(Y) WT=3, C=0

W
2
(Y): delay

C
3

C=1

A later write by T
3
 has been 

committed!



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT = 
0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

R
1
(X) RT=1

R
2
(X) RT=2

W
2
(X) WT=2, C=0

W
1
(X): abort

W
3
(Y) WT=3, C=0

W
2
(Y): delay

C
3

C=1

Ignore W
2
(Y) 

and proceed



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT = 
0, C = 1

Ignore W
2
(Y) 

and proceed

W
4
(Z)



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT = 
0, C = 1

Ignore W
2
(Y) 

and proceed

W
4
(Z) WT=4, 

C = 0

1. Physically realizable: 
TS(T

4
) >= RT(Z) and TS(T

4
) >= WT(Z)

2. Update WT and C (not committed yet)



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT = 
0, C = 1

Ignore W
2
(Y) 

and proceed

W
4
(Z) WT=4, 

C = 0

C
4

C=1



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT = 
0, C = 1

Ignore W
2
(Y) 

and proceed

W
4
(Z) WT=4, C = 0

C
4

C=1

R
2
(Z)



T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT 
= 0, C = 1

RT = 0, WT 
= 0, C = 1

RT = 0, WT = 
0, C = 1

Ignore W
2
(Y) 

and proceed

W
4
(Z) WT=4, C = 0

C
4

C=1

R
2
(Z): abort

1. NOT Physically realizable:
TS(T

2
) < WT(Z)

Abort/rollback



Timestamp-based Concurrency 
Control

Questions?



Multiversion Concurrency 
Control

• Maintains old versions of database elements 
in addition the current version in the 
database itself.

• The idea is to allow reads that would 
otherwise result in an abort (as the current 
version was written by future transaction)



Problem with Timestamp-Based 
Scheduling

T1 T2 T3 T4 A

150 200 175 225 RT = 0
WT = 0

R1(A) RT = 150

W1(A) WT = 150

R2(A) RT = 200
W2(A) WT = 200

R3(A)

Abort

R4(A) RT = 225
Had to abort because 
WT(A) is greater than 

my own timestamp
Would have been useful if I 

had access to an old version 
of A (from 150)…



Multiversion Timestamps
T1 T2 T3 T4 A

0
A

150
A

225

150 200 175 225 RT = 0
WT = 0

R1(A) RT = 
150

W1(A) Create

R2(A) RT=200
W2(A) Create

R3(A) RT=175

R4(A) RT=225

Don’t have to abort
Just read a previous value of 

A


