Shuffe S, S, 0n (0%

NumberOfsession
#
== 4 ———— v \ \/xf [/ Worker 1
t——t) by
e /] s XA
o [e <
Septype T ety AVAN (N
i 2 Friie I INAAGD
Feiscalt) \ o N Worker 2
Fiter . \ / O\
= B OB B
2 | / X
Rl Sy
g Al-"i:;.l rier Worker 3 Worker 3
A 174 1 A
i EHII . | (a) Traditional parallel query plan
o [0 .'ll . 2
Lmm V| P
e e I e 5 > A . A= A\ GG P
: 8 A S A —— — [s)] s
. —
O Pt |t N Va as S "-&. HyperCube [
2 [rimecoursern 2 | Trajectory0 oA A g . — > &) snme ol X
‘ ‘ (7N y \ Podrick R o a . H . ———))]
Tofas_" KeyeShae’ S 5
Timecourse Trajectory = cr o4 N N \
i e s = Walton JoffreMargaerian h 3
ursel ki -
jectory! or_ S friioismgsinat Myrcella Gregor A
Frequency [— b Troea v
SegmentiD SegmentiO Meryn.

Gendry yn
,,,,,,,

gCube shuffle-based parallel

Database System Internals

Two-Phase Commit (2PC)

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

May 30, 2025 CSE 444 — Two-Phase Commit 2

References

= Ullman book: Section 20.5

» Ramakrishnan book: Chapter 22

May 30, 2025 CSE 444 — Two-Phase Commit 3

We are Learning about Scaling DBMSs

» Scaling the execution of a query
X Parallel DBMS
\ MapReduce
\s Spark

» Scaling transactions
ol « Distributed transactions
* Replication
« Scaling with NoSQL and NewSQL

May 30, 2025 CSE 444 — Two-Phase Commit 4

Scaling Transactions Per Second

»OLTP: Transactions per second
“Online Transaction Processing”

* Amazon

» Facebook

= Twitter

= ... your favorite Internet application...

» Goal is to increase transaction throughput

May 30, 2025 CSE 444 — Two-Phase Commit S

How to Scale the DBMS?

» Can easily replicate the web servers and the
application servers

* \We cannot so easily replicate the database
servers, because the database is unique

» \We need to design ways to scale up the DBMS

May 30, 2025 CSE 444 — Two-Phase Commit 6

How to Scale?

k\ <

L

— Connection
] (e.g., JDBC)
L T

May 30, 2025 CSE 444 — Two-Phase Commit 7

How to Scale?

DB Server
-
— Connection
] (e.g., JDBC)
L o
May 30, 2025 CSE 444 — Two-Phase Commit

How to Scale?

DB Server Web Server
| |Connection) multiplex
] (e.g., JDBC)
HTTP/SSL

/

Browser
May 30, 2025 CSE 444 — Two-Phase Commit

DB Server

/.

__________’

May 30, 2025

How to Scale?

Connection I
(e.g., JDBC)

|

multiplex

HTTP/SSL

[] [J
Web Server Farm

Browser

CSE 444 — Two-Phase Commit

How to Scale?

Distributed DB

, [[‘
I C‘ ; I I .==== I
| = e
e | I —] ntp
I] | Connection I multiplex
(e.g., JDBC) |
I I [: HTTP/SSL
1 (O3 |l 1
1EE |
[= -— = 7
| Web Server Farm

Browser
May 30, 2025 CSE 444 — Two-Phase Commit 1"

How to Scale?

Distributed DB

\
!

I
/

http
multiplex

Connection
(e.g., JDBC)

U Uy

|

HTTP/SSL
Hard to ensure _
ACID \IF —
I l_ -
| Web Server Farm

Browser
May 30, 2025 CSE 444 — Two-Phase Commit 12

Transaction Scaling Challenges

= Distribution
* There is a limit on transactions/sec on one server
* Need to partition the database across multiple servers
« |f a transaction touches one machine, life is good!

« |f a transaction touches multiple machines, ACID becomes
extremely expensive! Need two-phase commit

» Replication
* Replication can help to increase throughput and lower
latency
» Create multiple copies of each database partition
» Spread queries across these replicas
« Easy for reads but writes, once again, become expensive!

May 30, 2025 CSE 444 — Two-Phase Commit 13

Distributed Transactions

= Concurrency control

= Failure recovery

* Transaction must be committed at all sites or at none of
the sites!

* No matter what failures occur and when they occur
« Two-phase commit protocol (2PC)

May 30, 2025 CSE 444 — Two-Phase Commit 14

Distributed Concurrency Control

* In theory, different techniques are possible

» Pessimistic, optimistic, locking, timestamps

* In practice, distributed two-phase locking

« Simultaneously hold locks at all sites involved

» Deadlock detection techniques
 Global wait-for graph (not very practical)

 Timeouts

* If deadlock: abort least costly local transaction

May 30, 2025 CSE 444 — Two-Phase Commit 15

Two-Phase Commit; Motivation

Coordinator

2) COMMIT Subordinate 1

@

1) User decides!
to commit

3) COMMIT

4) Coordinator
crashes

What do we do now?

Subordinate 3

Subordinate 2

But | already aborted!
(maybe due to crash)

May 30, 2025 CSE 444 — Two-Phase Commit 16

2PC Outline

* Phase 1: coordinator polls the subordinators
whether they want to commit or abort

= Phase 2: coordinator notifies all subordinators of
the decision commit or abort

May 30, 2025 CSE 444 — Two-Phase Commit 17

2PC: Phase 1, Prepare

Coordinator
Q Subordinate 1

-

@ Subordinate 2

Subordinate 3

May 30, 2025 CSE 444 — Two-Phase Commit 18

2PC: Phase 1, Prepare

Coordinator

1) User decides@ @

to commit

Subordinate 1

@ Subordinate 2

Subordinate 3

May 30, 2025 CSE 444 — Two-Phase Commit 19

2PC: Phase 1, Prepare

Coordinator
. 2) PREPARE Subordinate 1
1) User decides! T— —
L
to commit @

@ Subordinate 2

Subordinate 3

May 30, 2025 CSE 444 — Two-Phase Commit 20

2PC: Phase 1, Prepare

Coordinator
. 2) PREPARE Subordinate 1
1) User decides! T— —
to commit @
2) PREPARE

Subordinate 2

Subordinate 3

May 30, 2025 CSE 444 — Two-Phase Commit 21

2PC: Phase 1, Prepare

Coordinator
. 2) PREPARE Subordinate 1
1) User decides! T— —
to commit @

2) PREPARE

) PREPARE Subordinate 2

Subordinate 3

May 30, 2025 CSE 444 — Two-Phase Commit 22

2PC: Phase 1, Prepare

Coordinator
. 2) PREPARE Subordinate 1
1) User decides! T— —
to commit @

3) Force-write: prepare
2) PREPARE

) PREPARE Subordinate 2

Subordinate 3

May 30, 2025 CSE 444 — Two-Phase Commit 23

2PC: Phase 1, Prepare

Coordinator
. 2) PREPARE Subordinate 1
1) User decides| < N —
4) YES @

to commit
3) Force-write: prepare

2) PREPARE

) PREPARE Subordinate 2

Subordinate 3

May 30, 2025 CSE 444 — Two-Phase Commit 24

2PC: Phase 1, Prepare

Coordinator
. 2) PREPARE Subordinate 1
1) User decides| < N —
4) YES “— @

to commit
3) Force-write: prepare

2) PREPARE

) PREPARE Subordinate 2

3) Force-write: prepare

Subordinate 3

May 30, 2025 CSE 444 — Two-Phase Commit 25

2PC: Phase 1, Prepare

Coordinator
. 2) PREPARE Subordinate 1
1) User decides| < N —
to commit 4) YES @
3) Force-write: prepare
2) PREPARE
4) YES

) PREPARE% Subordinate 2

3) Force-write: prepare

Subordinate 3

May 30, 2025 CSE 444 — Two-Phase Commit 26

2PC: Phase 1, Prepare

Coordinator
. 2) PREPARE Subordinate 1
1) User decides| < N —
to commit 4) YES @
3) Force-write: prepare
2) PREPARE
4) YES

) PREPAR&) Subordinate 2

3) Force-write: prepare

Subordinate 3
3) Force-write: prepare

May 30, 2025 CSE 444 — Two-Phase Commit 27

2PC: Phase 1, Prepare

Coordinator
. 2) PREPARE Subordinate 1
1) User decide - N —
to commit 4) YES @
3) Force-write: prepare
2) PREPARE
4) YES

4) YES %
) PREPARE Subordinate 2

3) Force-write: prepare

Subordinate 3
3) Force-write: prepare

May 30, 2025 CSE 444 — Two-Phase Commit 28

2PC: Phase 2, Commit

5) Write: end, then forget transaction

Coordinator
. 2) COMMIT Subordinate 1
1) Force-write: - N — —
commit 4) ACK™~— L

Transaction is 2) COMMIT 3) Force-write: commit
now committed! 5) Commit transaction

4) ACK and “forget” it

4) ACK %
2) COMMIT Subordinate 2

3) Force-write: commit
J 5) Commit transaction

Subordinate 3 and “forget” it

3) Force-write: commit
5) Commit transaction and “forget” it

May 30, 2025 CSE 444 — Two-Phase Commit 29

2PC with Abort — Phase 1

Coordinator
. 2) PREPARE Subordinate 1
1) User decide - N — —
4) YES™— 5

to commit
) PREPARE 3) Force-write: prepare

4) NO

) PREPARE Subordinate 2

3) Force-write: abort
5) Abort transaction
Subordinate 3 and “forget” it

3) Force-write: abort
5) Abort transaction and “forget” it

May 30, 2025 CSE 444 — Two-Phase Commit 30

2PC with Abort — Phase 2

5) Write: end, then forget transaction

Coordinator
. 2) ABORT Subordinate 1
1) Force-write: -

—_— —
abort 4) ACK “— .
3) Force-write: abort

5) Abort transaction
and “forget” it

@ Subordinate 2

Subordinate 3

*» Phase 1, Prepare: collect votes
« What if no response? Presume abort

» Phase 2, send decision commit/abort
« Wait for ack then write END and forget

May 30, 2025 CSE 444 — Two-Phase Commit 32

Coordinator State Machine

= All states involve INIT
waliting for messages Receive: Commit
Send: Prepare
COLLECTING
R: No votes R: Yes votes
FW: Abort FW: Commit
S: Abort S: Commit
N\
ABORTING COMMITTING
RACKS -~ R:ACKS
W: End W: End
END

Forget Forget

Subordinate State Machine

= INIT and PREPARED
iInvolve waiting

R: Prepare
FW: Prepare

R: Prepare S: Yes vote

FW: Abort
S: No vote PREPARED
R: Commit
FW: Commit
S: Ack

R: Abort
FW: Abort
S: Ack

ABORTING

Abort Commit
and forget and forget

May 30, 2025 CSE 444 — Two-Phase Commit 34

Handling Site Failures

What to do if there is no response

= Approach 1: no site failure detection

« Subordinate can only do retrying & blocking

= Approach 2: timeouts, since unilateral abort is ok

 Subordinate: init state: can timeout;
prepared state is still blocking

« Coordinator: collecting state can timeout
committing state is blocking

= 2PC is a blocking protocol

May 30, 2025 CSE 444 — Two-Phase Commit 8

Recovery

A subordinate fails. During recovery:

= |[f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

May 30, 2025 CSE 444 — Two-Phase Commit 36

Recovery

A subordinate fails. During recovery:

= |[f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

= |f the last entry in the log is <ABORT T>

May 30, 2025 CSE 444 — Two-Phase Commit 37

Recovery

A subordinate fails. During recovery:

= |[f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

= |[f the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

May 30, 2025 CSE 444 — Two-Phase Commit 38

Recovery

A subordinate fails. During recovery:

= |[f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

= |[f the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

* If no COMMIT/ABORT/PREPARE is found

May 30, 2025 CSE 444 — Two-Phase Commit 39

Recovery

A subordinate fails. During recovery:

= |[f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

= |[f the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

* [f no COMMIT/ABORT/PREPARE is found, then
presume ABORT (why is this OK?)

May 30, 2025 CSE 444 — Two-Phase Commit 40

Recovery

A subordinate fails. During recovery:

= |[f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

= |[f the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

* [f no COMMIT/ABORT/PREPARE is found, then
presume ABORT (why is this OK?)

= |[f the last entry is <PREPARE T> then it's hard:

May 30, 2025 CSE 444 — Two-Phase Commit 41

Recovery

A subordinate fails. During recovery:

= |[f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

= |[f the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

* [f no COMMIT/ABORT/PREPARE is found, then
presume ABORT (why is this OK?)

= |[f the last entry is <PREPARE T> then it's hard:
must re-contact coordinator to find out whether ABORT
or COMMIT

May 30, 2025 CSE 444 — Two-Phase Commit 42

= Coordinator keeps transaction in transactions table until it
receives all acks

» To ensure subordinates know to commit or abort
« So acks enable coordinator to “forget” about transaction

= After crash, if recovery process finds no log records for a
transaction, the transaction is presumed to have aborted

» Read-only subtransactions: no changes ever need to be
undone nor redone

May 30, 2025 CSE 444 — Two-Phase Commit 43

Presumed Abort Protocol

» Optimization goals
» Fewer messages and fewer force-writes

* Principle
* If nothing known about a transaction, assume ABORT

» Aborting transactions need no force-writing

» Avoid log records for read-only transactions
* Reply with a READ vote instead of YES vote

May 30, 2025 CSE 444 — Two-Phase Commit 44

2PC State Machines (repeat)

INIT

lReceive: Commit
Send: Prepare
COLLECTING
R: No votes R: Yes votes
FW: Abort FW: Commit
S: Abort S: Commit
ABORTING COMMITTING
R: ACKS \/R ACKS
W: End ND W: End

R: Prepare
FW: Abort
S: No vote

R: Abort
FW: Abort
S: Ack

Abort
and forget

PREPARED

R: Prepare
FW: Prepare
S: Yes vote

R: Commit
FW: Commit
S: Ack

ABORTING w

Commit
and forget

Presumed Abort State

INIT
lReceive: Commit
Send: Prepare
COLLECTING
R: Yes votes
R: No votes FW: Commit
W: Abort S: Commit
S: Abort
COMMITTING
M R: ACKS
ND W: End

Machines

R: Prepare R: Prepare
W: Abort FW: Prepare
S: No vote S: Yes vote
PREPARED
R: Commit
R: Abort FW: Commit
W: Abor S Ack
o«
Abort Commit
and forget and forget

Summary:. Two-Phase Commit Protocol

* One coordinator and many subordinates

* Phase 1: prepare
 All subordinates must flush tail of write-ahead log to disk before ack
* Must ensure that if coordinator decides to commit, they can commit!
* Phase 2: commit or abort

* Log records for 2PC include transaction and coordinator ids
» Coordinator also logs ids of all subordinates

* Principle
 Whenever a process makes a decision: vote yes/no or commit/abort
« Or whenever a subordinate wants to respond to a message: ack
 First force-write a log record (to make sure it survives a failure)
* Only then send message about decision

= “Forget” completed transactions at the very end

* Once synchronized, or transaction has committed or aborted, all
nodes can stop logging any more information about that transaction

May 30, 2025 CSE 444 — Two-Phase Commit 47

Discussion

» Data replication: simple case of distributed TXN:
ensure that all replicas performed the update

» But 2PC is slow: waiting for the slowest link
» Major shortcoming: need reliable coordinator
» Paxos: gives up the coordinator, even slower...

* NoSQL.: give up strong consistency (i.e. ACID)

» Mostly for data replication: “eventual consistency”
» Programming nightmare: how to write a TXN?

May 30, 2025 CSE 444 — Two-Phase Commit 48

