

Database System Internals

Intro to Parallel DBMSs

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

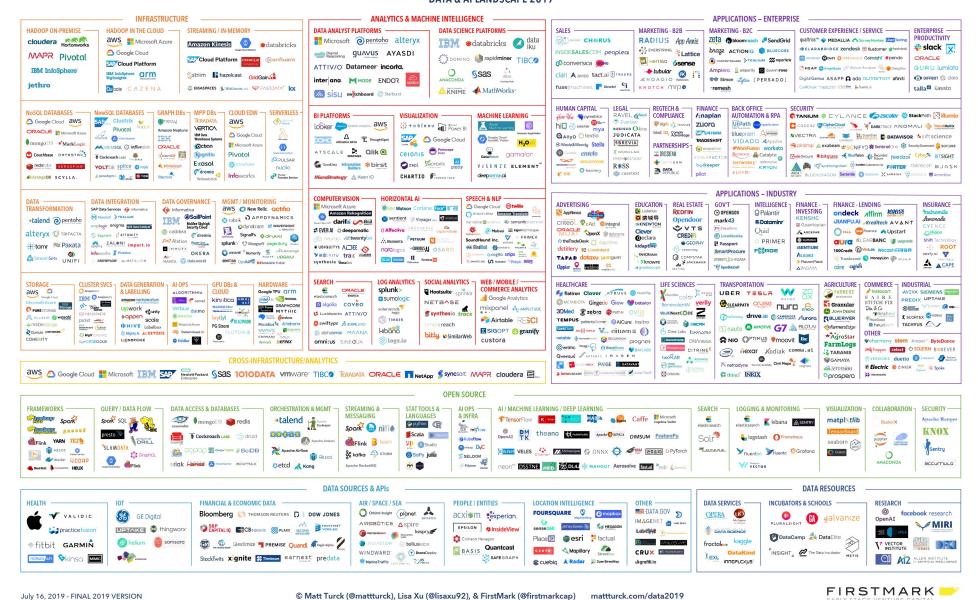
What We Have Already Learned

- Phase 1: Query Execution
 - Data Storage and Indexing
 - Buffer management
 - Query evaluation and operator algorithms
 - Query optimization
- Phase 2: Transaction Processing
 - Concurrency control: pessimistic and optimistic
 - Transaction recovery: undo, redo, and undo/redo
- Phase 3: Parallel Processing & Distributed
 Transactions

Where We Are Headed Next

- Scaling the execution of a query
 - Parallel DBMS
 - MapReduce
 - Spark
- Scaling transactions
 - Distributed transactions
 - Replication

DATA & AI LANDSCAPE 2019



Current version at https://mad.firstmark.com/

How to Scale the DBMS?

- Can easily replicate the web servers and the application servers
- We cannot so easily replicate the database servers, because the database is unique
- We need to design ways to scale up the DBMS

Building Our Parallel DBMS

Data model?

Relational (SimpleDB!)

Building Our Parallel DBMS

Data model?

Relational (SimpleDB!)

Scaleup goal?

Scaling Transactions Per Second

- OLTP: Transactions per second "Online Transaction Processing"
- Amazon
- Facebook
- Twitter
- ... your favorite Internet application...
- Goal is to increase transaction throughput
- We will get back to this next week

Scaling Single Query Response Time

- OLAP: Query response time "Online Analytical Processing"
- Entire parallel system answers one query
- Goal is to improve query runtime
- Use case is analysis of massive datasets

Big Data

Volume alone is not an issue

- Relational databases do parallelize easily; techniques available from the 80's
 - Data partitioning
 - Parallel query processing
- SQL is embarrassingly parallel
 - We will learn how to do this!

Big Data

New workloads are an issue

- Big volumes, small analytics
 - OLAP queries: join + group-by + aggregate
 - Can be handled by today's RDBMSs
- Big volumes, big analytics
 - More complex Machine Learning, e.g. click prediction, topic modeling, SVM, k-means
 - Requires innovation Active research area

Building Our Parallel DBMS

Data model? Relational

Scaleup goal? OLAP

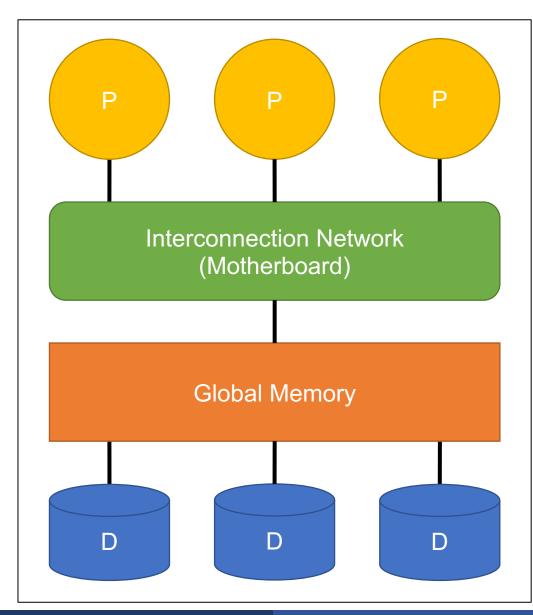
Building Our Parallel DBMS

Data model? Relational

Scaleup goal? OLAP

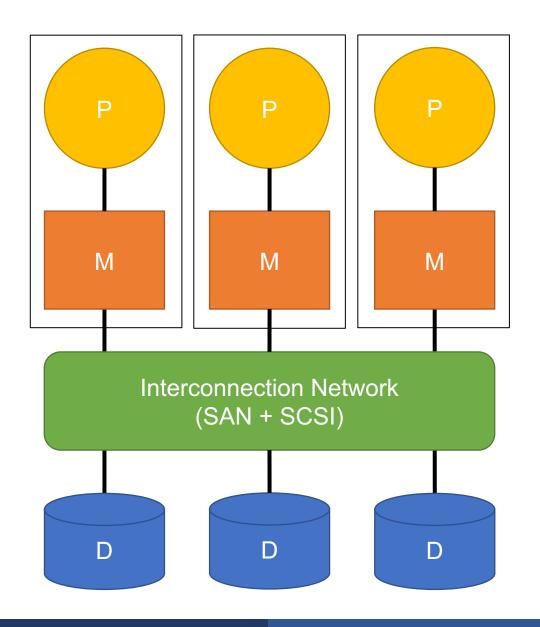
Architecture?

Shared-Memory Architecture



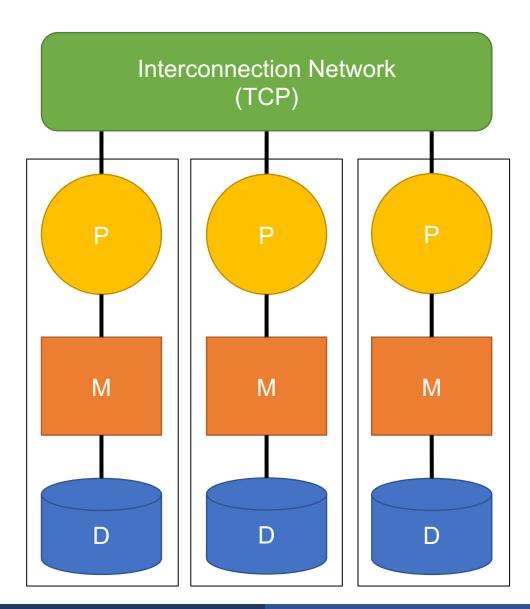
- Shared main memory and disks
- Your laptop or desktop uses this architecture
- Expensive to scale
- Easiest to implement on

Shared-Disk Architecture



- Only shared disks
- No contention for memory and high availability
- Typically 1-10 machines

Shared-Nothing Architecture



- Uses cheap, commodity hardware
- No contention for memory and high availability
- Theoretically can scale infinitely
- Hardest to implement on

Building Our Parallel DBMS

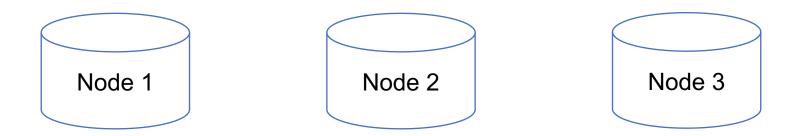
Data model? Relational

Scaleup goal? OLAP

Architecture? Shared-Nothing

Shared-Nothing Execution Basics

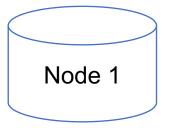
- Multiple DBMS instances (= processes) also called "nodes" execute on machines in a cluster
 - One node plays role of the coordinator
 - Other nodes play role of workers
- Workers execute queries
 - Typically all workers execute the same plan
 - Workers can execute multiple queries at the same time

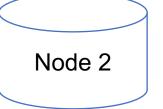


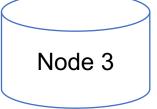
Shared-Nothing Database

We will assume a system that consists of multiple commodity machines on a common network

New problem: Where does the data go?





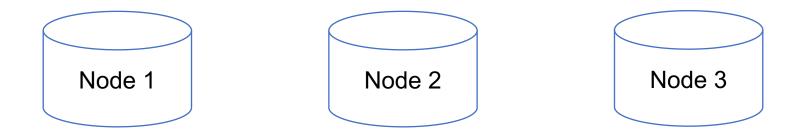


Shared-Nothing Database

We will assume a system that consists of multiple commodity machines on a common network

New problem: Where does the data go?

The answer will influence our execution techniques



Option 1: Unpartitioned Table

- Entire table on just one node in the system
- Will bottleneck any query we need to run in parallel
- We choose partitioning scheme to divide rows among machines

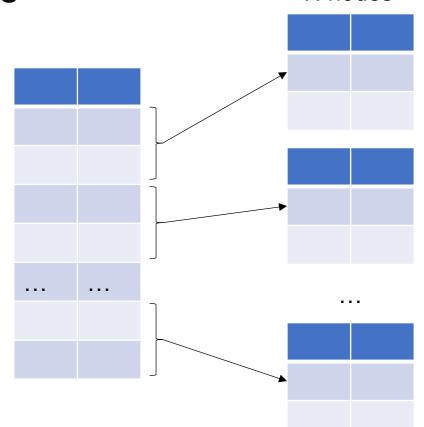
Option 2: Block Partitioning

Tuples are horizontally (row) partitioned by raw size

N nodes

with no ordering considered

B(R) = K



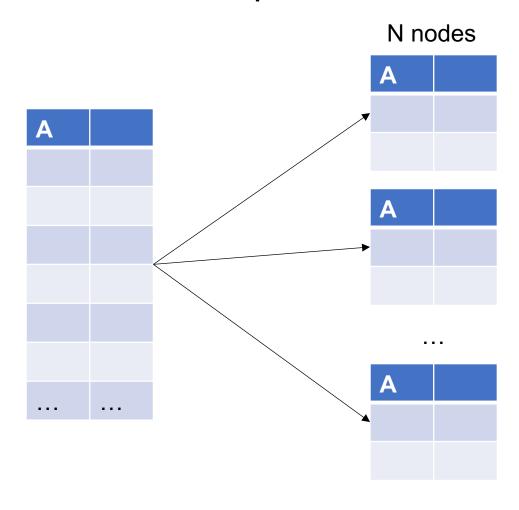
$$B(R_1) = K/N$$

$$B(R_2) = K/N$$

$$B(R_N) = K/N$$

Option 3: Range Partitioning

Node contains tuples in chosen attribute ranges



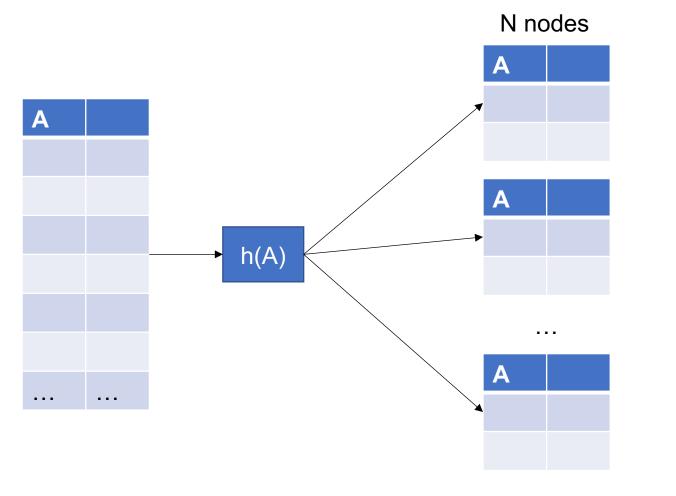
$$R_1$$
, -inf < A <= v_1

$$R_2$$
, $v_1 < A <= v_2$

$$R_N$$
, $v_N < A < inf$

Option 4: Hash Partitioning

Node contains tuples with chosen attribute hashes



$$R_1$$
, 1 = h(A)%N

$$R_2$$
, 2 = h(A)%N

$$R_N$$
, 0 = h(A)%N

Skew: The Justin Bieber Effect

 Hashing data to nodes is very good when the attribute chosen better approximates a uniform distribution

 Keep in mind: Certain nodes will become bottlenecks if a poorly chosen attribute is hashed

Assume:

R is block partitioned

SELECT *

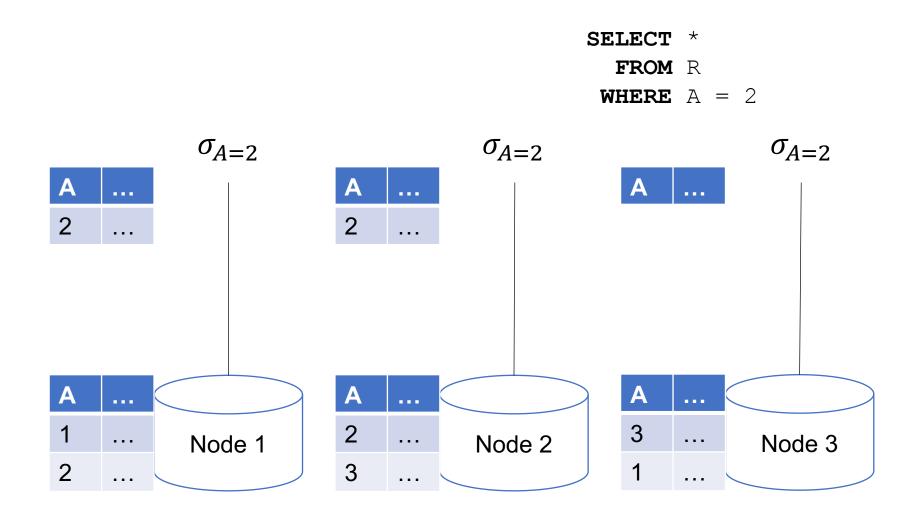
FROM R

WHERE A = 2

Α	
1	 Node 1
2	

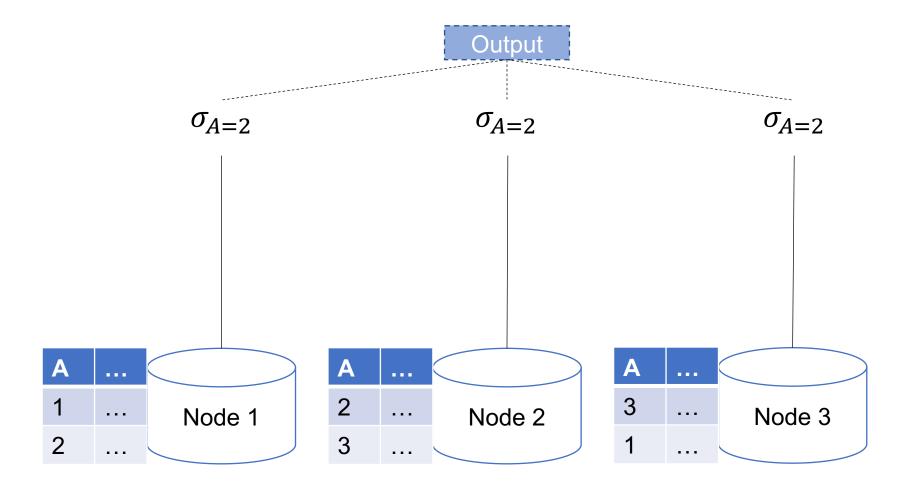
Α	
2	 Node 2
3	

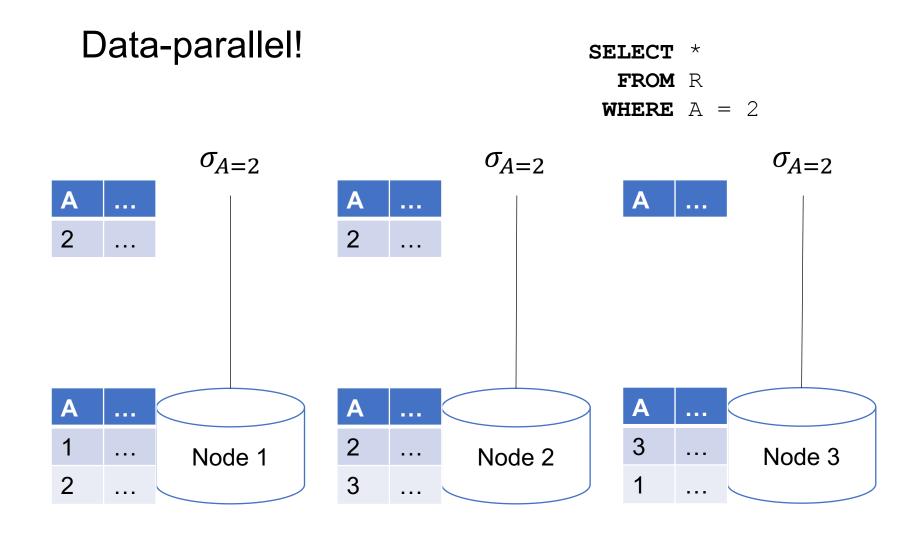
Α	
3	 Node 3
1	



Implicit Union

Parallel query plans implicitly union at the end





Compute $\sigma_{A=v}(R)$, or $\sigma_{v1<A< v2}(R)$

On a conventional database: cost = B(R)

Q: What is the cost on each node for a database with N nodes?

A:

Compute $\sigma_{A=v}(R)$, or $\sigma_{v1<A< v2}(R)$

On a conventional database: cost = B(R)

Q: What is the cost on each node for a database with N nodes?

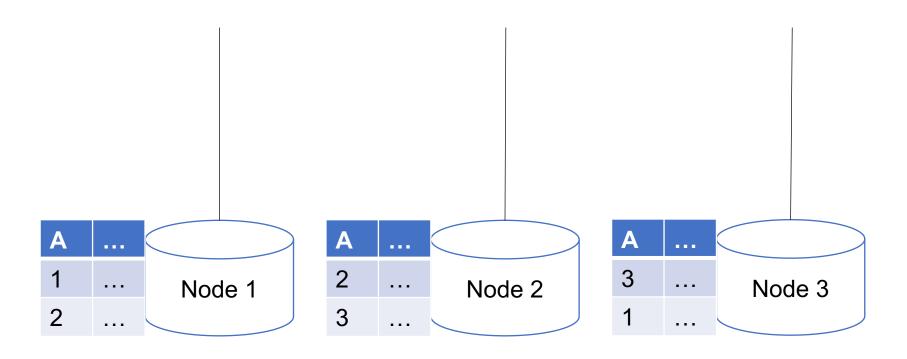
A: B(R) / N block reads on each node

What if this query is not data-parallel?

Assume:
R is block partitioned
SELECT *

....

FROM R

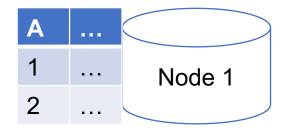


Assume:
R is block partitioned

SELECT *
FROM R

 $\gamma_{R.A}$

GROUP BY R.A



 $\gamma_{R,A}$

Α	
2	 Node 2
3	

Α	
3	 Node 3
1	

 $\gamma_{R.A}$

Assume:

R is block partitioned

SELECT *

FROM R

GROUP BY R.A

Α	
1	
1	

 $\gamma_{R.A}$

Α	
2	
2	

 $\gamma_{R.A}$

Α	
3	
3	

 $\gamma_{R.A}$

Α	
1	 Node 1
2	

Α	
2	 Node 2
3	

Α	
3	 Node 3
1	

1. Hash shuffle tuples

Assume:

R is block partitioned

SELECT *

FROM R

GROUP BY R.A

A	
1	
1	

 $\gamma_{R,A}$

Α	
2	
2	

 $\gamma_{R.A}$

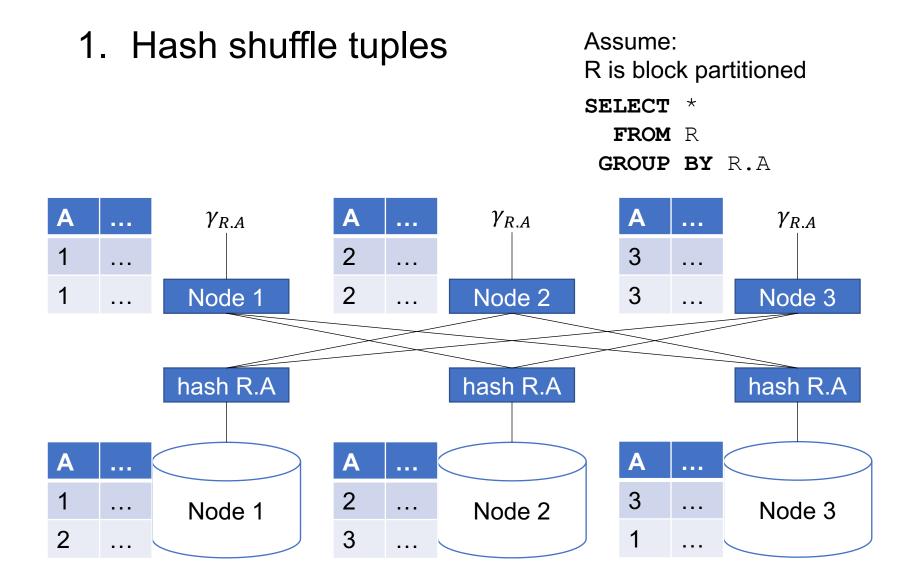
Α	
3	
3	

 $\gamma_{R.A}$

Α	
1	 Node 1
2	

Α		
2	•••	Node 2
3		

Α	
3	 Node 3
1	



Partitioned Aggregation

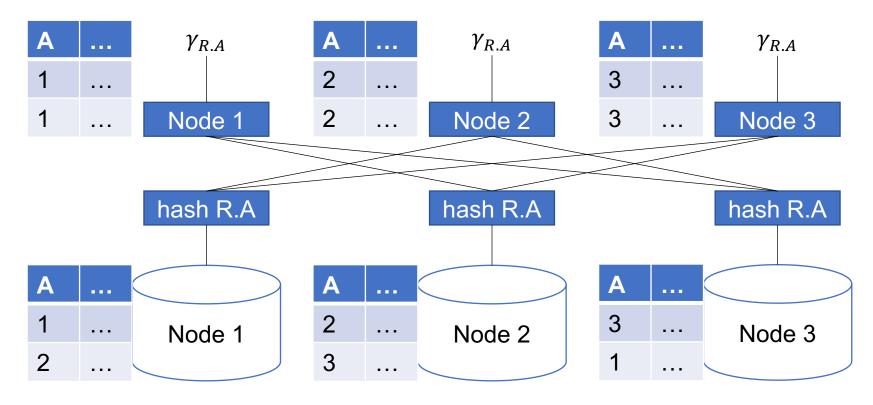
- 1. Hash shuffle tuples
- 2. Local aggregation

Assume: R is block partitioned

SELECT *

FROM R

GROUP BY R.A



- Case 1: R is partitioned on A
 - Do the group-by locally; done.

- Case 1: R is partitioned on A
 - Do the group-by locally; done.
- Case 2: R is partitioned on something else
 - Naïve: reshuffle on A, then do as in case 1

- Case 1: R is partitioned on A
 - Do the group-by locally; done.
- Case 2: R is partitioned on something else
 - Naïve: reshuffle on A, then do as in case 1
 - Better: do a <u>local</u> group-by-sum (reduces size), then reshuffle on A and do a second group-by

- Case 1: R is partitioned on A
 - Do the group-by locally; done.
- Case 2: R is partitioned on something else
 - Naïve: reshuffle on A, then do as in case 1
 - Better: do a <u>local</u> group-by-sum (reduces size), then reshuffle on A and do a second group-by

$$\begin{array}{l} \gamma_{A,sum(B)}(R_1 \cup R_2 \cup \cdots \cup R_N) \\ = \gamma_{A,sum(B)}(\gamma_{A,sum(B)}(R_1) \cup \cdots \cup \gamma_{A,sum(B)}(R_N)) \end{array}$$

Select A, sum(B) from R group by A

- Case 1: R is partitioned on A
 - Do the group-by locally; done.
- Case 2: R is partitioned on something else
 - Naïve: reshuffle on A, then do as in case 1

"Combiners" in MapReduce

 Better: do a <u>local</u> group-by-sum (reduces size), then reshuffle on A and do a second group-by

$$\gamma_{A,sum(B)}(R_1 \cup R_2 \cup \cdots \cup R_N)$$

$$= \gamma_{A,sum(B)}(\gamma_{A,sum(B)}(R_1) \cup \cdots \cup \gamma_{A,sum(B)}(R_N))$$

Can we do better?

- Sum?
- Count?
- Avg?
- Max?
- Median?

Can we do better?

- Sum?
- Count?
- Avg?
- Max?
- Median?

Distributive	Algebraic	Holistic
sum($a_1+a_2++a_9$)= sum(sum($a_1+a_2+a_3$)+ sum($a_4+a_5+a_6$)+ sum($a_7+a_8+a_9$))	avg(B) = sum(B)/count(B)	median(B)

Can we do better?

- Sum?
- Count?
- Avg?
- Max?
- Median?

YES

Distributive	Algebraic	Holistic
sum($a_1+a_2++a_9$)= sum(sum($a_1+a_2+a_3$)+ sum($a_4+a_5+a_6$)+ sum($a_7+a_8+a_9$))	avg(B) = sum(B)/count(B)	median(B)

Compute partial aggregates before shuffling

Can we do better?

- Sum?
- Count?
- Avg?
- Max?
- Median?

V	F	9
		J

Distributive	Algebraic	Holistic
sum($a_1+a_2++a_9$)= sum(sum($a_1+a_2+a_3$)+ sum($a_4+a_5+a_6$)+ sum($a_7+a_8+a_9$))	avg(B) = sum(B)/count(B)	median(B)

Compute partial aggregates before shuffling

MapReduce implements this as "Combiners"

Exercise (www.draw.io is fast!)

Example Query with Group By

SELECT a, max(b) as topb FROM R WHERE a > 0 GROUP BY a

Machine 1

Machine 2

Machine 3

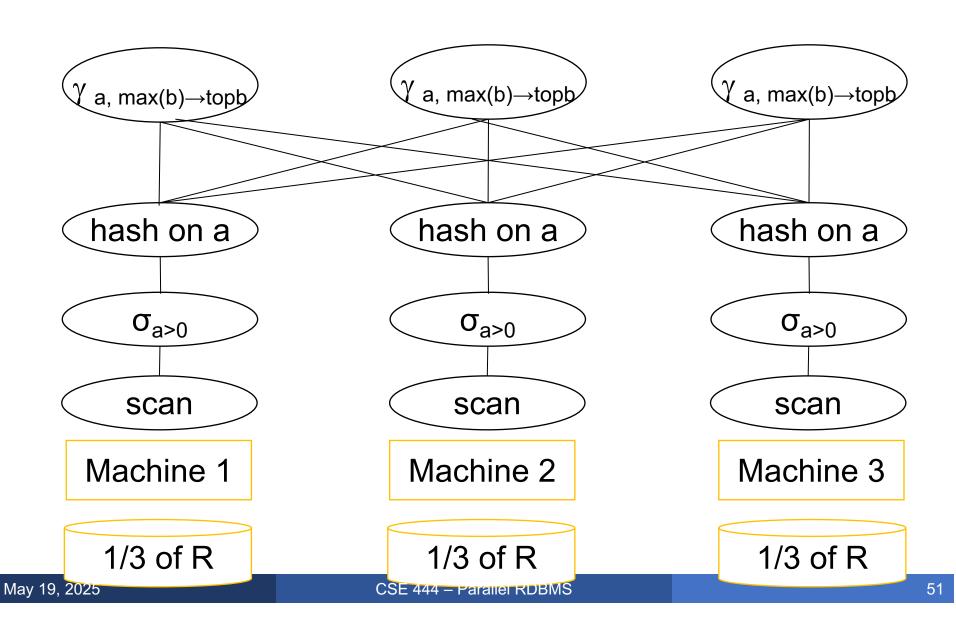
1/3 of R

1/3 of R

1/3 of R

CSE 444 – Parallel RDBMS

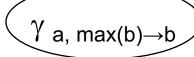
Without Combiners



γ a, max(b)→topb

√ a, max(b)→topb∕

hash on a

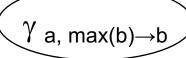


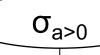
 $\sigma_{a>0}$

scan

Machine 1

hash on a

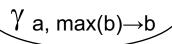


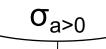


scan

Machine 2

hash on a





scan

Machine 3

1/3 of R

1/3 of R

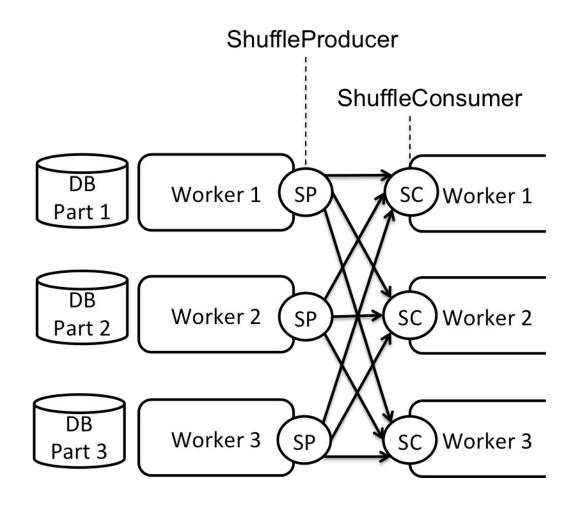
1/3 of R

Parallel Query Evaluation

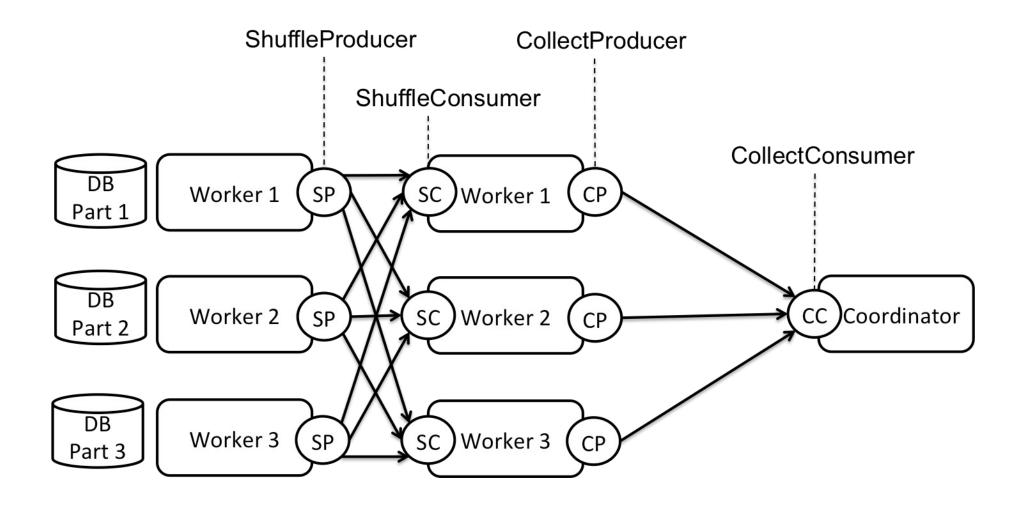
New operator: Shuffle

- Serves to re-shuffle data between processes
 - Handles data routing, buffering, and flow control
- Two parts: ShuffleProducer and ShuffleConsumer
- Producer:
 - Pulls data from child operator and sends to n consumers
 - Producer acts as driver for operators below it in query plan
- Consumer:
 - Buffers input data from n producers and makes it available to operator through getNext() interface

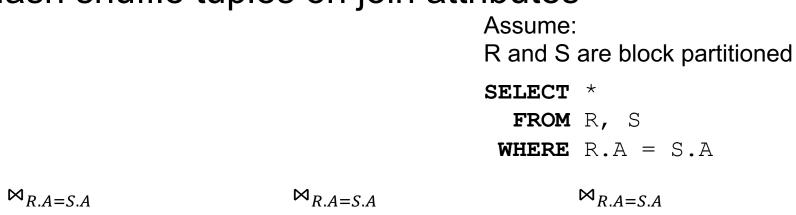
Parallel Query Execution

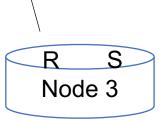


Parallel Query Execution

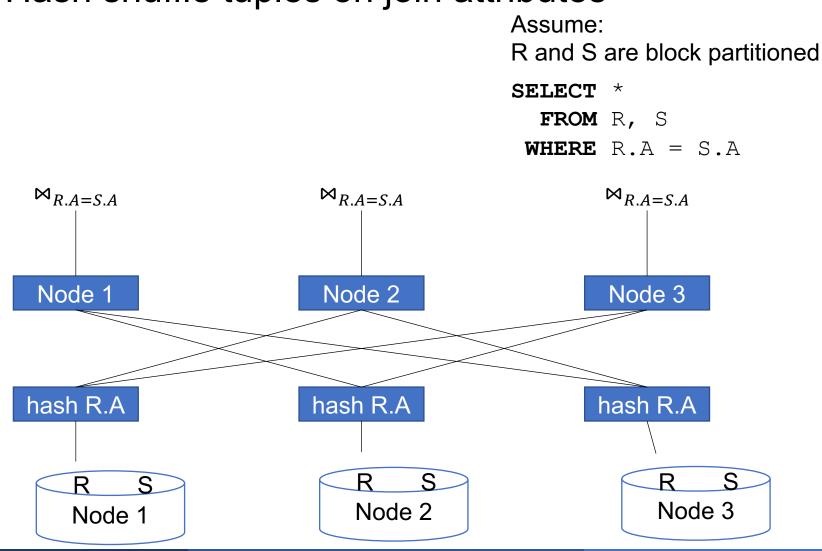


1. Hash shuffle tuples on join attributes

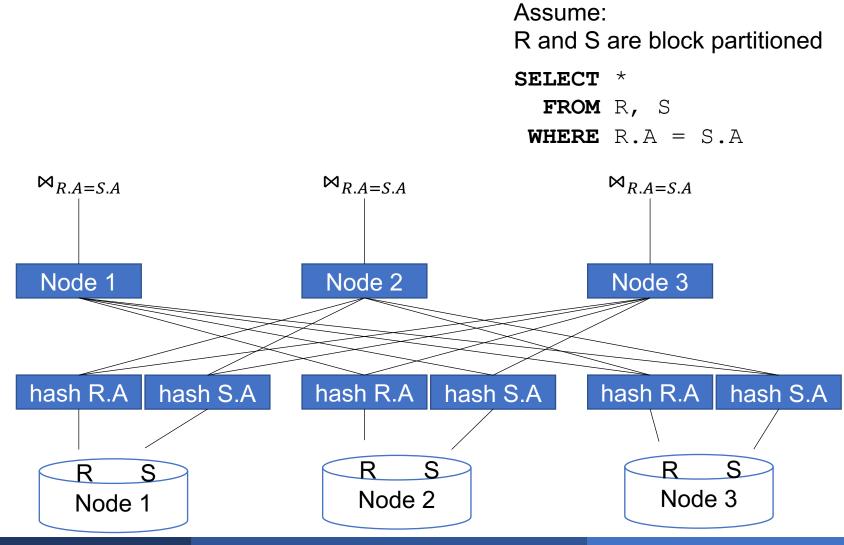




1. Hash shuffle tuples on join attributes



1. Hash shuffle tuples on join attributes

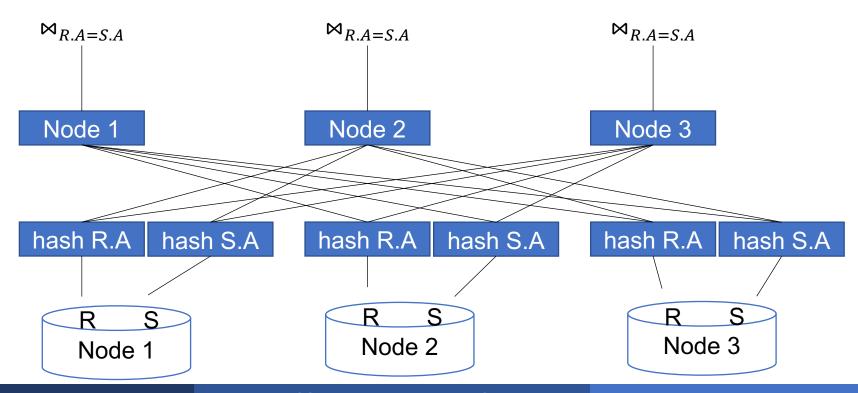


- 1. Hash shuffle tuples on join attributes
- 2. Local join

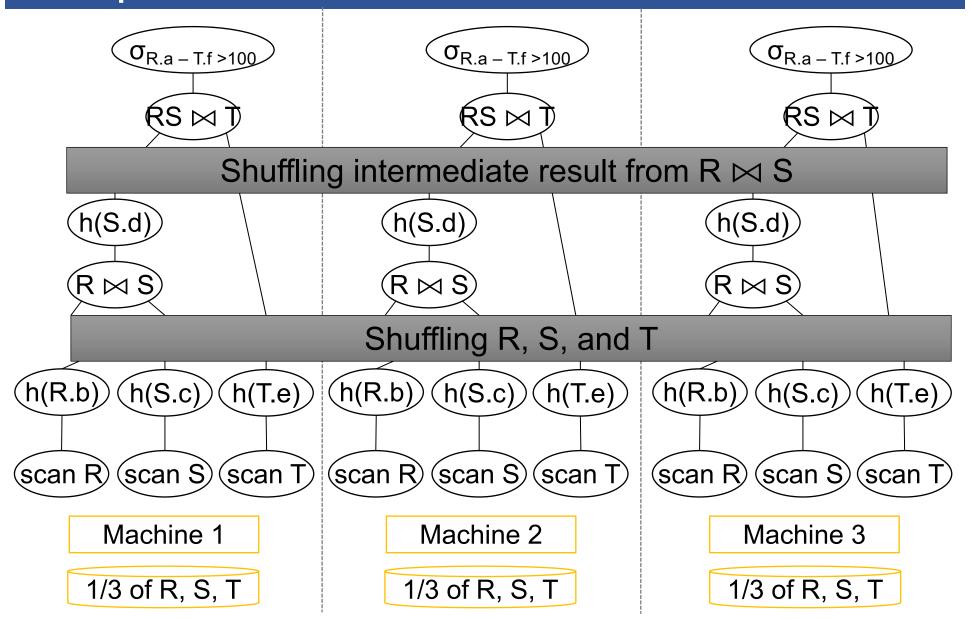
Assume:

R and S are block partitioned

SELECT *
FROM R, S
WHERE R.A = S.A



Multiple Shuffles



May 19, 2025 60

Summary

With one new operator, we've made SimpleDB an OLAP-ready parallel DBMS!

- Next lecture:
 - Skew handling
 - Algorithm refinements

Speedup and Scaleup

- Consider:
 - Query: $\gamma_{A,sum(C)}(R)$
 - Runtime: dominated by reading chunks from disk
- If we double the number of nodes P, what is the new running time?
- If we double both P and the size of R, what is the new running time?

Speedup and Scaleup

- Consider:
 - Query: $\gamma_{A,sum(C)}(R)$
 - Runtime: dominated by reading chunks from disk
- If we double the number of nodes P, what is the new running time?
 - Half (each server holds ½ as many chunks)
- If we double both P and the size of R, what is the new running time?

Speedup and Scaleup

- Consider:
 - Query: $\gamma_{A,sum(C)}(R)$
 - Runtime: dominated by reading chunks from disk
- If we double the number of nodes P, what is the new running time?
 - Half (each server holds ½ as many chunks)
- If we double both P and the size of R, what is the new running time?
 - Same (each server holds the same # of chunks)

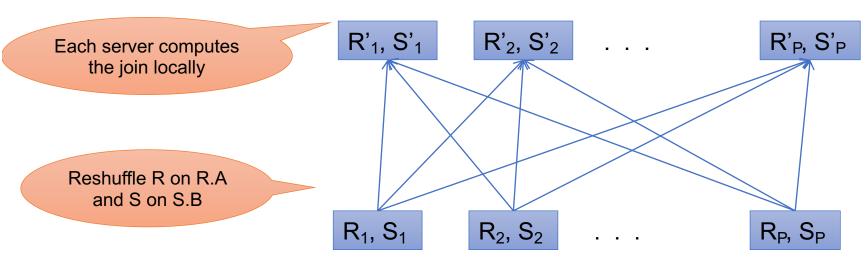
Parallel Join: R ⋈_{A=B} S

- Data: R(K1,A, C), S(K2, B, D)
- Query: $R(\underline{K1},A,C) \bowtie S(\underline{K2},B,D)$

Parallel Join: $R \bowtie_{A=B} S$

Data: R(K1,A, C), S(K2, B, D)

• Query: $R(K1,A,C) \bowtie S(K2,B,D)$



Initially, both R and S are horizontally partitioned on K1 and K2

Parallel Join: R ⋈_{A=B} S

Step 1

- Every server holding any chunk of R partitions its chunk using a hash function h(t.A) mod P
- Every server holding any chunk of S partitions its chunk using a hash function h(t.B) mod P

Step 2:

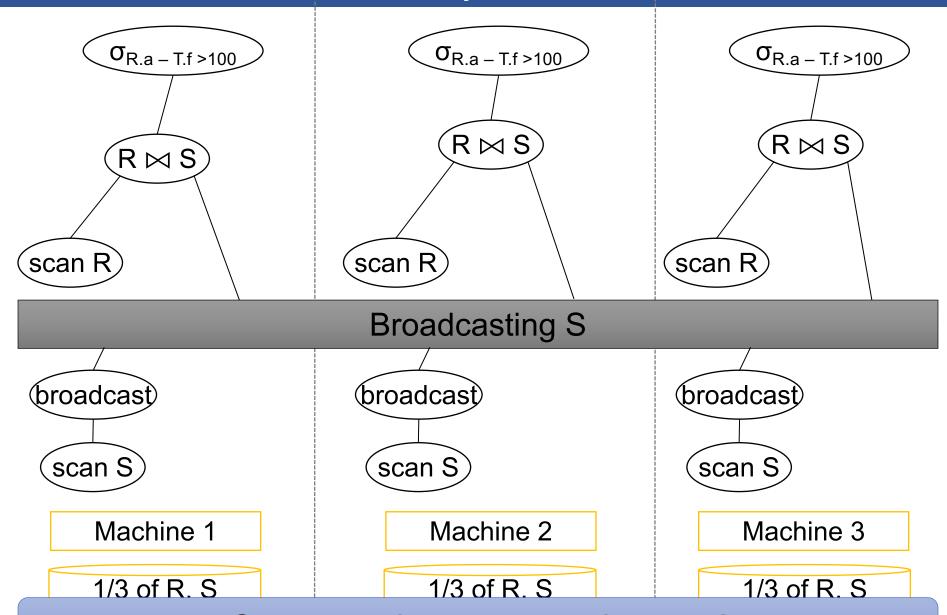
 Each server computes the join of its local fragment of R with its local fragment of S

Optimization for Small Relations

When joining R and S

- If |R| >> |S|
 - Leave R where it is
 - Replicate entire S relation across nodes
- Also called a small join or a broadcast join

Broadcast Join Example



Can save huge network costs!

Justin Biebers Re-visited

Skew:

- Some partitions get more input tuples than others Reasons:
 - Range-partition instead of hash
 - Some values are very popular: "heavy hitters"
 - Selection before join with different selectivities
- Some partitions generate more output tuples than others

Some Skew Handling Techniques

If using range partition:

- Ensure each range gets same number of tuples
- E.g.: {1, 1, 1, 2, 3, 4, 5, 6} → [1,2] and [3,6]
- Eq-depth v.s. eq-width histograms

Some Skew Handling Techniques

Create more partitions than nodes

- And be smart about scheduling the partitions
 - E.g. One node ONLY does Justin Biebers
- Note: MapReduce uses this technique

Some Skew Handling Techniques

Use subset-replicate (a.k.a. "skewedJoin")

- Given R ⋈_{A=B} S
- Given a heavy hitter value R.A = 'v' (i.e. 'v' occurs very many times in R)
- Partition R tuples with value 'v' across all nodes e.g. block-partition, or hash on other attributes
- Replicate S tuples with value 'v' to all nodes
- R = the build relation
- S = the probe relation