Course evals (first 5 minutes)

Please take a few minutes to fill out the course
evaluations:

https://uw.iasystem.org/survey/286151

And thank you all for your hard work this quarter!

March 7, 2024 CSE 444 — Advanced Topics 1

Shuffle S,S;, S on (0

(a) Traditional parallel query plan

e
Trial_has_Timecourse Trial_has_Trajectory *
P et [Tl
n [rmecoursess 2 [rectonyo

Tinecouse Ty
PX | Temecoursein o | Teajectoryin Myrcelia Gregor

f— requency p

Segmentin SegmentiD L)

Kndofoats Kngotoat. [

Neeames Marertd
) P NFrames

—

tCube shuffle-based parallel g

Database System Internals

Two-Phase Commit (2PC

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

March 7, 2024

CSE 444 — Two-Phase Commit

References

= Ullman book: Section 20.5

» Ramakrishnan book: Chapter 22

March 7, 2024 CSE 444 — Two-Phase Commit

We are Learning about Scaling DBMSs

» Scaling the execution of a query
X Parallel DBMS
\ MapReduce
\s Spark

» Scaling transactions
ol « Distributed transactions
» Replication
 Scaling with NoSQL and NewSQL

March 7, 2024 CSE 444 — Two-Phase Commit

Scaling Transactions Per Second

=OLTP: Transactions per second
“Online Transaction Processing”

* Amazon

» Facebook

= Twitter

= ... your favorite Internet application...

» Goal is to increase transaction throughput

March 7, 2024 CSE 444 — Two-Phase Commit

How to Scale the DBMS?

» Can easily replicate the web servers and the
application servers

* \We cannot so easily replicate the database
servers, because the database is unique

* \We need to design ways to scale up the DBMS

March 7, 2024 CSE 444 — Two-Phase Commit

How to Scale”?

.
- Application

U

-

] |Connection
- (e.g., JDBC)
/ o

March 7, 2024 CSE 444 — Two-Phase Commit

How to Scale”?

.
- Application

\d\
K\ \
-y
L
T‘= Connection
- (e.g., JDBC)
- o

March 7, 2024 CSE 444 — Two-Phase Commit

How to Scale”?

DB Server Web Server
. | http
| |Connection) multiplex
s (e.g., JDBC)
L R

March 7, 2024 CSE 444 — Two-Phase Commit

How to Scale?

DB Server
. http
1 |Connection I multiplex
(e.g., JDBC)
—
L R]

March 7, 2024

L—,
Web Server Farm

CSE 444 — Two-Phase Commit

HTTP/SSL

How to Scale”?

Distributed DB

'~ T
r= " e
J=I= Il
| (L] [I
BRI)
I B I | I I http
I [&= I Connection [multiplex
(e.g., JDBC) oo
: I | \ HTTP/SSL
1 |22 =) |
O - =7
| Web Server Farm

Browser

March 7, 2024 CSE 444 — Two-Phase Commit

How to Scale”?

Distributed DB

I ‘- . 4
| Web Server Farm

|
r= " e
—11 | i
B = iy
| [] [I
I CI o I I —= I
Bl 1)
I B I | I I http
I (] == I Connection [multiplex
(e.g., JDBC) T
I [HTTP/SSL
Hard to ensure | — I
ACID \IF |
[
|
[

Browser

March 7, 2024 CSE 444 — Two-Phase Commit

Transaction Scaling Challenges

= Distribution
* There is a limit on transactions/sec on one server
* Need to partition the database across multiple servers
* |f a transaction touches one machine, life is good!

« |f a transaction touches multiple machines, ACID becomes
extremely expensive! Need two-phase commit

= Replication
» Replication can help to increase throughput and lower
latency
» Create multiple copies of each database partition
» Spread queries across these replicas
« Easy for reads but writes, once again, become expensive!

March 7, 2024 CSE 444 — Two-Phase Commit

Distributed Transactions

= Concurrency control

= Failure recovery

e Transaction must be committed at all sites or at none of
the sites!

« No matter what failures occur and when they occur
* Two-phase commit protocol (2PC)

March 7, 2024 CSE 444 — Two-Phase Commit

Distributed Concurrency Control

" In theory, different techniques are possible
* Pessimistic, optimistic, locking, timestamps

= In practice, distributed two-phase locking

« Simultaneously hold locks at all sites involved

» Deadlock detection techniques

 Global wait-for graph (not very practical)
* Timeouts

* |f deadlock: abort least costly local transaction

March 7, 2024 CSE 444 — Two-Phase Commit

Two-Phase Commit: Motivation

Coordinator

inate 1
1) User decides 2) COMMIT Subordinate
to commit
3) COMMIT

4) Coordinator
crashes

What do we do now?

Subordinate 3

Subordinate 2

But | already aborted!
(maybe due to crash)

March 7, 2024 CSE 444 — Two-Phase Commit

2PC Outline

» Phase 1: coordinator polls the subordinators
whether they want to commit or abort

= Phase 2: coordinator notifies all subordinators of
the decision commit or abort

March 7, 2024 CSE 444 — Two-Phase Commit

2PC: Phase 1, Prepare

Coordinator _
Q Subordinate 1

-

@ Subordinate 2

-

Subordinate 3

March 7, 2024 CSE 444 — Two-Phase Commit

2PC: Phase 1, Prepare

Coordinator

Subordinate 1
1) User decides@ ubordinate
to commit @

@ Subordinate 2

-

Subordinate 3

March 7, 2024 CSE 444 — Two-Phase Commit

2PC: Phase 1, Prepare

Coordinator
. - 2) PREPARE Subordinate 1
1) User decides C) T — —
to commit @

@ Subordinate 2

-

Subordinate 3

March 7, 2024 CSE 444 — Two-Phase Commit

2PC: Phase 1, Prepare

Coordinator
. - 2) PREPARE Subordinate 1
1) User decides(7 T —
to commit @
2) PREPARE
Subordinate 2

-

Subordinate 3

March 7, 2024 CSE 444 — Two-Phase Commit

2PC: Phase 1, Prepare

Coordinator
. - 2) PREPARE Subordinate 1
1) User decides(7 T N— —
to commit @

2) PREPARE

) PREPARE Subordinate 2

Subordinate 3

March 7, 2024 CSE 444 — Two-Phase Commit

2PC: Phase 1, Prepare

Coordinator
. 2) PREPARE Subordinate 1
1) User decides T — —
to commit @

3) Force-write: prepare
2) PREPARE

) PREPARE Subordinate 2

Subordinate 3

March 7, 2024 CSE 444 — Two-Phase Commit

2PC: Phase 1, Prepare

Coordinator
. 2) PREPARE Subordinate 1
1) User decides! < T~ —
4) YES @

to commit
3) Force-write: prepare

2) PREPARE

) PREPARE Subordinate 2

Subordinate 3

March 7, 2024 CSE 444 — Two-Phase Commit

2PC: Phase 1, Prepare

Coordinator
. 2) PREPARE Subordinate 1
1) User decides! < T~ —
4) YES @

to commit
3) Force-write: prepare

2) PREPARE

) PREPARE Subordinate 2

3) Force-write: prepare

Subordinate 3

March 7, 2024 CSE 444 — Two-Phase Commit

2PC: Phase 1, Prepare

Coordinator
. 2) PREPARE Subordinate 1
1) User decides! < T~ —
to commit 4) YES ™ O
3) Force-write: prepare
2) PREPARE
4) YES

) PREPARE% Subordinate 2

3) Force-write: prepare

Subordinate 3

March 7, 2024 CSE 444 — Two-Phase Commit

2PC: Phase 1, Prepare

Coordinator
. 2) PREPARE Subordinate 1
1) User decides! < T~ —
to commit 4) YES ™ O
3) Force-write: prepare
2) PREPARE
4) YES

) PREPARE% Subordinate 2

3) Force-write: prepare

Subordinate 3
3) Force-write: prepare

March 7, 2024 CSE 444 — Two-Phase Commit

2PC: Phase 1, Prepare

Coordinator
. 2) PREPARE Subordinate 1
1) User decide -~ T~ —
to commit 4) YES ™ O
3) Force-write: prepare
2) PREPARE
4) YES

4) YES %
) PREPARE Subordinate 2

3) Force-write: prepare

Subordinate 3
3) Force-write: prepare

March 7, 2024 CSE 444 — Two-Phase Commit

2PC: Phase 2, Commit

5) Write: end, then forget transaction

Coordinator
. 2) COMMIT Subordinate 1
1) Force-write: -— N —
commit 4) ACK O

Transaction is 2) COMMIT 3) Force-write: commit
now committed! 5) Commit transaction

4) ACK and “forget” it

4) ACK %
2) COMMIT Subordinate 2

3) Force-write: commit
J 5) Commit transaction

Subordinate 3 and “forget” it

3) Force-write: commit
5) Commit transaction and “forget” it

March 7, 2024 CSE 444 — Two-Phase Commit

2PC with Abort — Phase 1

Coordinator
. 2) PREPARE Subordinate 1
1) User decide -~ T~ —
4) YES @

to commit
) PREPARE 3) Force-write: prepare

4) NO

) PREPARE Subordinate 2
3) Force-write: abort

5) Abort transaction

Subordinate 3 and “forget” it

3) Force-write: abort
5) Abort transaction and “forget” it

March 7, 2024 CSE 444 — Two-Phase Commit

2PC with Abort — Phase 2

5) Write: end, then forget transaction

Coordinator
. 2) ABORT Subordinate 1
1) Force-write: -—

S —
abort 4) ACK “— O

3) Force-write: abort
5) Abort transaction
and “forget” it

@ Subordinate 2

-

Subordinate 3

March 7, 2024 31

» Phase 1, Prepare: collect votes
* What if no response? Presume abort

= Phase 2, send decision commit/abort
« Wait for ack then write END and forget

March 7, 2024 CSE 444 — Two-Phase Commit

Coordinator State Machine

= All states involve INIT
Waltlng for messages Receive: Commit
Send: Prepare
COLLECTING

R: No votes R: Yes votes
FW: Abort FW: Commit

S: Abort S: Commit

Ny

ABORTING COMMITTING
R: ACKS \/R: ACKS

W: End END W: End

Forget Forget
March 7, 2024 33

Subordinate State Machine

= INIT and PREPARED
iInvolve waiting

R: Prepare
FW: Prepare

R: Prepare S: Yes vote

FW: Abort

S: No vote PREPARED

R: Commit
FW: Commit
S: Ack

R: Abort
FW: Abort
S: Ack

ABORTING

Abort Commit
and forget and forget

March 7, 2024 CSE 444 — Two-Phase Commit

Handling Site Failures

What to do if there is no response

= Approach 1: no site failure detection
« Subordinate can only do retrying & blocking

» Approach 2: timeouts, since unilateral abort is ok

« Subordinate: init state: can timeout;
prepared state is still blocking

 Coordinator: collecting state can timeout
committing state is blocking

= 2PC is a blocking protocol

March 7, 2024 CSE 444 — Two-Phase Commit

Recovery

A subordinate fails. During recovery:

= |f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

March 7, 2024 CSE 444 — Two-Phase Commit

Recovery

A subordinate fails. During recovery:

= |f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

= |f the last entry in the log is <ABORT T>

March 7, 2024 CSE 444 — Two-Phase Commit

Recovery

A subordinate fails. During recovery:

= |f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

= |f the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

March 7, 2024 CSE 444 — Two-Phase Commit

Recovery

A subordinate fails. During recovery:

= |f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

= |f the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

= If no COMMIT/ABORT/PREPARE is found

March 7, 2024 CSE 444 — Two-Phase Commit

Recovery

A subordinate fails. During recovery:

= |[f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

= |f the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

* [f no COMMIT/ABORT/PREPARE is found, then
presume ABORT (why is this OK?)

March 7, 2024 CSE 444 — Two-Phase Commit

Recovery

A subordinate fails. During recovery:

= |[f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

= |f the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

* [f no COMMIT/ABORT/PREPARE is found, then
presume ABORT (why is this OK?)

= |f the last entry is <PREPARE T> then it's hard:

March 7, 2024 CSE 444 — Two-Phase Commit

Recovery

A subordinate fails. During recovery:

= |[f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

= |f the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

* [f no COMMIT/ABORT/PREPARE is found, then
presume ABORT (why is this OK?)

= |[f the last entry is <PREPARE T> then it's hard:
must re-contact coordinator to find out whether ABORT
or COMMIT

March 7, 2024 CSE 444 — Two-Phase Commit

= Coordinator keeps transaction in transactions table until it
receives all acks
* To ensure subordinates know to commit or abort
« So acks enable coordinator to “forget” about transaction

= After crash, if recovery process finds no log records for a
transaction, the transaction is presumed to have aborted

» Read-only subtransactions: no changes ever need to be
undone nor redone

March 7, 2024 CSE 444 — Two-Phase Commit

Presumed Abort Protocol

» Optimization goals
* Fewer messages and fewer force-writes

* Principle
« If nothing known about a transaction, assume ABORT

» Aborting transactions need no force-writing

» Avoid log records for read-only transactions
* Reply with a READ vote instead of YES vote

March 7, 2024 CSE 444 — Two-Phase Commit

2PC State Machines (repeat)

INIT
lReoeive: Commit
Send: Prepare
COLLECTING
R: No votes R: Yes votes
FW: Abort FW: Commit
S: Abort S: Commit
ABORTING COMMITTING
R: ACKS \/R ACKS
W: End ND W: End

R: Prepare
FW: Abort
S: No vote

R: Prepare
FW: Prepare
S: Yes vote

PREPARED
R: Commit
FW: Abort FW: Commit
S: Ack S Ack

R: Abort

ABORTING w

Abort Commit
and forget and forget

Presumed Abort State Machines

INIT
lReoeive: Commit
Send: Prepare
COLLECTING
R: Yes votes
R: No votes FW: Commit
W: Abort S: Commit
S: Abort
COMMITTING

ND

W End

R: Prepare R: Prepare
W: Abort FW: Prepare
S: No vote S: Yes vote

PREPARED
R: Commit

R: Abort FW: Commit

W: Abo S Ack
—
Abort Commit
and forget and forget

Summary: Two-Phase Commit Protocol

* One coordinator and many subordinates

* Phase 1: prepare

 All subordinates must flush tail of write-ahead log to disk before ack
» Must ensure that if coordinator decides to commit, they can commit!

* Phase 2: commit or abort
* Log records for 2PC include transaction and coordinator ids
» Coordinator also logs ids of all subordinates

* Principle
 Whenever a process makes a decision: vote yes/no or commit/abort
« Or whenever a subordinate wants to respond to a message: ack
* First force-write a log record (to make sure it survives a failure)
* Only then send message about decision

= “Forget” completed transactions at the very end

» Once synchronized, or transaction has committed or aborted, all
nodes can stop logging any more information about that transaction

March 7, 2024 CSE 444 — Two-Phase Commit

Discussion

» Data replication: simple case of distributed TXN:
ensure that all replicas performed the update

» But 2PC is slow: waliting for the slowest link
» Major shortcoming: need reliable coordinator
» Paxos: gives up the coordinator, even slower...

* NoSQL.: give up strong consistency (i.e. ACID)

» Mostly for data replication:*eventual consistency”
* Programming nightmare: how to write a TXN?

March 7, 2024 CSE 444 — Two-Phase Commit 48

