y 24, 2021

Sessionld

NumberOfsession

Date
ExperimentiD

Ouration
NMarker
Setupharker
Record edMovieFile
Hote

t

Trial_has_Timecourse

[riat_tas_rrajectory

\‘\m

S Sk
insaiime, Rentysm Eiia

TeisllD ey
Timecourseld 2

v

N\ 2
Cersél
! Podrick
ora KeveShae

Timecourse [

s,

TimecourselD

JoffreMargaeryan

Frequency
SegmentiD
KindOfData
NErames

i

fTyron

Myrcelia Gregor
- Bronn

Menyn

yn

CSE 444 - Sprin

2021

¥
r
i

Nl

N

| "i:

!

m.nl

|

mml

NS

A

O — 3

Database System Internals

MapReduce

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

(a) Traditional parallel query plan

Sianiom 4

gl ube shuffle-based parallel g

Announcements

= L ab 5 releases today
 Topic is query optimization
« Has a final writeup component of ~3 page summary
of your SimpleDB system

May 24, 2021 CSE 444 - Spring 2021 2

Parallel Data Processing

OLAP: Online Analytical Processing

= Big queries: joins, group-by, large data
= No updates

= Use parallelism/distribution to improve
performance

= Challenge: optimize ONE query

OLTP: Online Transaction Processing

= Big data, but simple query: many simple updates
= Distribute data to support large workloads

= Challenge: ACID or something weaker

May 24, 2021 CSE 444 - Spring 2021 3

This lecture

Data model? Relational

Scaleup goal? OLAP

Architecture? Shared-Nothing

May 24, 2021 CSE 444 - Spring 2021 4

This lecture

Data model? Relational

!

text/kv-pairs
Scaleup goal? OLAP

Architecture? Shared-Nothing

May 24, 2021 CSE 444 - Spring 2021 5

References

= MapReduce: Simplified Data Processing on Large
Clusters. Jeffrey Dean and Sanjay Ghemawat.

OSDI'04

= Mining of Massive Datasets, by Rajaraman and
Ullman, http://i.stanford.edu/ " ullman/mmds.html
* Map-reduce (Section 20.2);
* Chapter 2 (Sections 1,2,3 only)

May 24, 2021 CSE 444 - Spring 2021 6

http://i.stanford.edu/~ullman/mmds.html

= MapReduce is obsolete now
Interesting only from a historical perspective

= It has had an important influence, still visible
today, but newer systems do a better Iiob at

adopting traditional database principles:

* Spark
» Snowflake - standard highly distributed SQL

May 24, 2021 CSE 444 - Spring 2021 7

Map Reduce Review

= Google: [Dean 2004]

= Open source implementation: Hadoop

= MapReduce = high-level programming model and
implementation for large-scale parallel data
processing

May 24, 2021 CSE 444 - Spring 2021 8

MapReduce Motivation

= Not designed to be a DBMS

= But to simplify task of writing parallel

programs
* Simple programming model that applies to many problems

= Hides messy details in runtime library:
* Automatic parallelization
* Load balancing
» Network and disk transfer optimizations
* Handling of machine failures
* Robustness

content in part from: Jeff Dean

May 24, 2021 CSE 444 - Spring 2021 9

Data Processing at Massive Scale

= Massive parallelism:
 100s, or 1000s, or 10000s servers (think data center)
* Many hours

= Failure:
* If medium-time-between-failure is 1 year
* Then 10000 servers have one failure / hour

May 24, 2021 CSE 444 - Spring 2021 10

Data Storage: GFS/HDFS

= MapReduce job input is a file

= Distributed file system:
« GFS: Google File System
« HDFS: Hadoop File System

= File is split into “blocks” or “chunks”: 64MB or so

= Blocks are replicated & stored on random
machines

= Files are append only

May 24, 2021 CSE 444 - Spring 2021 11

MapReduce: Data Model

Files !

A file = a bag of (key, value) pairs

A MapReduce program:
= Input: a bag of (inputkey, wvalue) pairs
= OQutput: a bag of (outputkey, value)pairs

May 24, 2021 CSE 444 - Spring 2021 12

Step 1: the MAP Phase

User provides the MAP-function:

* [nput: (input key, value)
= Quput: bag of (intermediate key, value)

System applies map function in parallel to all
(input key, value) pairs in the input file

May 24, 2021 CSE 444 - Spring 2021 13

Step 2: the REDUCE Phase

User provides the REDUCE function:

" |nput: (intermediate key, bag of values)

= Output:
» Original MR paper: bag of output (values)
* Hadoop: bag of (output key, wvalues)

System groups all pairs with the same intermediate
key, and passes the bag of values to REDUCE

May 24, 2021 CSE 444 - Spring 2021 14

= Counting the number of occurrences of each
word in a large collection of documents

» Each Document

* The key = document id (did)
* The value = set of words (word)

reduce(String key, lterator values):

map(String key, String value):

/[key: document name

// value: document contents

for each word w in value:
Emitintermediate(w, “17);

May 24, 2021

// key: a word

// values: a list of counts

int result = 0;

for each v in values:
result += Parselnt(v);

Emit(AsString(result));

CSE 444 - Spring 2021 15

MAP REDUCE

—> | (w1,1)

(did1,v1) |~ [w2n

> | (w3,1) w1, (1,1,1,...,1)) —> | (w1, 25)
w2, (1,1,...)) —> | (w2, 77)
(did2,V2) 7| w1 W3,(1...)) —> | (w3, 12)

Shuffle

—> | (W2,1)

(did3,v3)|—

May 24, 2021 16

Jobs vs. Tasks

= A MapReduce Job

* One single “query”, e.g. count the words in all docs
* More complex queries may consists of multiple jobs

= A Map Task, or a Reduce Task

» A group of instantiations of the map-, or reduce-
function, which are scheduled on a single worker

May 24, 2021 CSE 444 - Spring 2021 | V4

= A worker is a process that executes one task at a
time

. Typicalllz there is one worker per processor,
hence 4 or 8 per node

= Often talk about “slots”
* E.g., Each server has 2 map slots and 2 reduce slots

May 24, 2021 CSE 444 - Spring 2021 18

/ MAP Tasks REDUCE Tasks
T 12 winy | Shuffle /
(did1,v1) |7 | w21 - ~
| w31) > | (w1, (1,1,1,...,1)) —> | (w1, 25)
>< W2, (1,1,...)) —> | w2, 77)
(did2,v2) | T~ [Wt A | w3,(1..) > | (w3, 12)
(w2,1) — | ..
(did3,v3)| \ .

May 24, 2021 CSE 444 - Spring 2021

Parallel MapReduce Details

Reduce

(Shuffle)

May 24, 2021

| |

Task

Task

assae

CSE 444 - Spring 2021

Output to disk,
replicated in cluster

Intermediate data
goes to local disk

Data not
necessarily local

File system: GFS
or HDFS

20

MapReduce Implementation

» There is one master node

= Input file gets partitioned further into M’ splits
» Each split is a contiguous piece of the input file
» By default splits correspond to blocks

= Master assigns workers (=servers) to the M’ map
tasks, keeps track of their progress

= Workers write their output to local disk

* Output of each map task is partitioned into R
regions

= Master assigns workers to the R reduce tasks

" Reduce workers read regions from the map
workers’ local disks

May 24, 2021 CSE 444 - Spring 2021 2]

MapReduce Phases

Map Task Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

Split Record Reader—»Map —#!Combine —»| Copy |M—>‘ Reduce \
l filel

HDFS

May 24, 2021 CSE 444 - Spring 2021 22

Interesting Implementation Details

= Worker failure:
* Master pings workers periodically,
* If down then reassigns its task to another worker
* (# a parallel DBMS restarts whole query)

= How many map and reduce tasks:
* Larger is better for load balancing
* But more tasks also add overheads
* (# parallel DBMS spreads ops across all nodes)

May 24, 2021 CSE 444 - Spring 2021 23

Interesting Implementation Details

Backup tasks:

= Straggler = a machine that takes unusually long
time to complete one of the last tasks. Eg:

» Bad disk forces frequent correctable errors (30MB/s
-> 1MB/s)

e The cluster scheduler has scheduled other tasks on that
machine

= Stragglers are a main reason for slowdown

= Solution: pre-emptive backup execution of the
last few remaining in-progress tasks

May 24, 2021 CSE 444 - Spring 2021 24

The State of MapReduce Systems

= Lots of extensions to address limitations
* Capabilities to write DAGs of MapReduce jobs
» Declarative languages

* Ability to read from structured storage (e.g., indexes)
e Etc.

= Most companies use both types of engines (MR
and DBMS), with increased integration

= New systems emerged which improve over
MapReduce: e.g. Spark

May 24, 2021 CSE 444 - Spring 2021 25

Relational Queries over MR

= Query > query plan

= Each operator > one MapReduce job

May 24, 2021 CSE 444 - Spring 2021 26

GroupBy in MapReduce

Doc(key, word)

MapReduce IS A GroupBY!

MAP=GROUP BY, REDUCE=Aggregate

SELECT word, sum(1)
FROM Doc
GROUP BY word

May 24, 2021

Joins in MapReduce

= [f MR is GROUP-BY plus AGGREGATE, then how
do we compute R(A, B) > S(B,C) using MR?

May 24, 2021

Joins in MapReduce

= If MR is GROUP-BY plus AGGREGATE, then how
do we compute R(A,B) = S(B,C) using MR?

= Answer:
* Map: group R by R.B, group S by S.B
* Input = either a tuple R{a,b) or a tuple S(b,c)
 Output = (b,R(a,b)) or (b,S(b,c)) respectively

 Reduce:
* Input = (b,{R(al,b),R(a2,b),...,S(b,c1),S(b,c2),...})
» Output = {R(a1,b),R(a2,b),...} x {S(b,c1),5(b,c2),...}

* In practice: improve the reduce function (next...)

May 24, 2021

Users(name, age)
Pages(userName, url)

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

map([String key], String value):
// value.relation is either ‘Users’ or ‘Pages’
if value.relation="Users’:
Emitintermediate(value.name, (1, value));
else // value.relation="Pages’:

Emitintermediate(value.userName, (2, value));

reduce(String user, lterator values):
Users = empty; Pages = empty;
for each v in values:
if v.type = 1: Users.insert(v)
else Pages.insert(v);
for v1 in Users, for v2 in Pages
Emit(v1,v2);

Join in MR

Users(name, age)
Pages(userName, url)

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

May 24, 2021

Join in MR

Users(name, age)
Pages(userName, url)

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

May 24, 2021

Users(name, age)
Pages(userName, url)

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

/ Map 1 \

May 24, 2021

Join in MR

Users(name, age)
Pages(userName, url)

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (userName, url);

Jnd = joiln Users by name, Pages by userName
/ \ from relation #1
. Map 1 e

Means: it comes
from relation #2

©)
o

(2, userName)

May 24, 2021

Users(name, age)
Pages(userName, url)

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;
/ Map 1 \ / Reducer 1 \
(1, user)
S (1, fred)
(2, fred)
(2, fred)
- /
4 Reducer 2 h
> (1, jane)
(2, jane)
(2, userName) (2, jane)

o /

May 24, 2021

Parallel DBMS vs MapReduce

Parallel DBMS
» Relational data model and schema

= Declarative query language: SQL

= Many pre-defined operators: relational algebra

= Can easily combine operators into complex queries
= Query optimization, indexing, and physical tuning

= Streams data from one operator to the next without
blocking

= Can do more than just run queries: Data
management

« Updates and transactions, constraints, security, etc.

MapReduce: A major step backwards by David DeWitt

May 24, 2021 CSE 444 - Spring 2021 36

Parallel DBMS vs MapReduce

MapReduce

= Data model is a file with key-value pairs!

= No need to “load data” before processing it
= Easy to write user-defined operators

= Can eqsily add nodes to the cluster (no need to even
restarﬁ

. tl.Jses less memory since processes one key-group at a
ime

= Intra-query faulttolerance thanks to results on disk
= Intermediate results on disk also facilitate scheduling
= Handles adverse conditions: e.g., stragglers

= Arguably more scalable... but also needs
more nodes!

MapReduce: A major step backwards by David DeWitt

May 24, 2021 CSE 444 - Spring 2021 K4

