o

Shuffle S,S;, S on (0

etuptarker
Record edMovieFle
Hote

SessioniD
R
o
;
A
'r. 7 o serupin ;’A-‘-’
o — AT e
0 [semans P [oeke]
NumberOfTrial :"“:'"“'" ' {7
e [towe Setpconsnon | WP EEIE=EN o BAT)\ i /Y
ke |
7

(a) Traditional parallel query plan

N
L
mg;m

T

I g
[N
.-_!g= =,

N

"
Trial_has_Timecourse Trial_has_Trajectory "
I e A |
e — | E—

o [rano e raao e
12 | rmecoursein 2 | Tajectoryid

Timecourse Trajectory
7 | remecourseld o | tesiectoryiD ‘Myicots Grogor

Frequency frequency -

Segmentid Seqmentid Meryn

Kindooata Kingotoa. 4

Nerames Markerd
) P NFrames £Cube shuffle-based parallel g

k o)

Database System Internals
Transactions: Recovery (part 1

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

February 21, 2024 CSE 444 — Transaction Recovery 1

Main textbook (Garcia-Molina)
*»Ch.17.2-4, 18.1-3, 18.8-9
Second textbook (Ramakrishnan)

= Ch. 16-18

Also: M. J. Franklin. Concurrency Control and
Recovery. The Handbook of Computer Science and
Engineering, A. Tucker, ed., CRC Press, Boca
Raton, 1997.

February 21, 2024 CSE 444 — Transaction Recovery 1

Transaction Management

Two parts:

= Concurrency control: ACID
» Recovery from crashes: ACID

We already discussed concurrency control
You are implementing locking in lab3

Today, we start recovery

February 21, 2024

Type of Crash Prevention

Constraints and

Wrong data entry Data cleaning

Redundancy:

Disk crashes e.g. RAID, archive

Remote backups or

Data center failures .
replicas

System failures: DATABASE
e.g. power RECOVERY

February 21, 2024 CSE 444 — Transaction Recovery 1 6

System Crash

Client 1:

BEGIN TRANSACTION
UPDATE Account1

SET balance= balance — 500

UPDATE Account2
SET balance = balance + 500
COMMIT

February 21, 2024 CSE 444 — Transaction Recovery 1

System Failures

= Each transaction has internal state

* When system crashes, internal state is lost
« Don’t know which parts executed and which didn’t
* Need ability to undo and redo

February 21, 2024

Buffer Manager Review

READ
WRITE Page requests from higher-level code
| Files and access methods
Buffer pool Buffer pool manager
Disk page _
Pag Main
Free frame—— memory
INPUT | choice of frame dictated
OUTPUT by replacement policy

Disk = collection

of blocks i 1 page corresponds

Data must be in RAM for DBMS to operate on it! to 1 disk block

Buffer pool = table of <frame#, pageid> pairs
February 21, 2024 CSE 444 — Transaction Recovery 1

Buffer Manager Review

» Enables higher layers of the DBMS to assume that
needed data is in main memory

» Caches data in memory. Problems when crash
OCCUTS:

1. If committed data was not yet written to disk
2. If uncommitted data was flushed to disk

February 21, 2024

Transactions

» Assumption: the database is composed of
elements.

* 1 element can be either:
* 1 page = physical logging
1 record = logical logging

" In Lab 4 we use page-level elements

February 21, 2024 CSE 444 — Transaction Recovery 1 11

Primitive Operations of Transactions

» READ(X, 1)

» copy element X to transaction local variable t

= WRITE(X, 1)

 copy transaction local variable t to element X

= INPUT(X)

* read element X to memory buffer

= OUTPUT(X)

e write element X to disk

February 21, 2024 CSE 444 — Transaction Recovery 1

Running Example

READ(A,);
t:=1*2;
WRITE(A,1);
READ(B,t);
t:=1*2;
WRITE(B,t)
COMMIT;

BEGIN TRANSACTION

Initially, A=B=8.

Atomicity requires that either
(1) T commits and A=B=16, or
(2) T does not commit and A=B=8.

February 21, 2024

CSE 444 — Transaction Recovery 1

Running Example

BEGIN TRANSACTION
READ(A,t);
t:=1*2;
WRITE(A,1);
READ(B,t);

Initially, A=B=8.

Atomicity requires that either
(1) T commits and A=B=16, or
(2) T does not commit and A=B=8.

February 21, 2024

CSE 444 — Transaction Recovery 1

Transaction

Buffer pool

Disk

INPUT(A)

Mem A | MemB

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,)

t:=t*2

WRITE(B, 1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2024

CSE 444 — Transaction Recovery 1

15

Transaction

Buffer pool

INPUT(A)

Mem A | MemB

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,)

t:=t*2

WRITE(B, 1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2024

CSE 444 — Transaction Recovery 1

16

Transaction

Buffer pool

INPUT(A)

Mem A | MemB

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,)

t:=t*2

WRITE(B, 1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2024

CSE 444 — Transaction Recovery 1

17

Transaction

Buffer pool

Disk

INPUT(A)

Mem A | MemB

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

c [00| O

o | 00 | CO

INPUT(B)

READ(B,)

t:=t*2

WRITE(B, 1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2024

CSE 444 — Transaction Recovery 1

18

Transaction

Buffer pool

Disk

INPUT(A)

Mem A | MemB

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

c (0| 00| 0| OO

c | 0O |0 | 0|00

READ(B,)

t:=t*2

WRITE(B, 1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2024

CSE 444 — Transaction Recovery 1

19

Transaction

Buffer pool

Disk

INPUT(A)

Mem A | MemB

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,)

o (0O | 00| 0| 0|0

| 0O |0 |0 | 0|0

t:=t*2

WRITE(B, 1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2024

CSE 444 — Transaction Recovery 1

20

Transaction

Buffer pool

Disk

INPUT(A)

Mem A | MemB

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,)

t:=t*2

o (0O (0O | 0|0 | 0|0

o (00 [0 | 0O |0 |0 | O

WRITE(B, 1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2024

CSE 444 — Transaction Recovery 1

21

Transaction

Buffer pool

Disk

INPUT(A)

Mem A | MemB

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,)

t:=t*2

WRITE(B, 1)

(0O (0O |0 |0 |0 |0 | O

| 0O [0 |00 |00 | 0|0

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2024

CSE 444 — Transaction Recovery 1

22

Transaction

Buffer pool

Disk

INPUT(A)

Mem A | MemB

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,)

t:=t*2

WRITE(B, 1)

(0O (0O |0 |0 |0 |0 | O

OUTPUT(A)

| 0O |00 | 0O |00 |0 | 0|0

OUTPUT(B)

COMMIT

February 21, 2024

CSE 444 — Transaction Recovery 1

23

Transaction

Buffer pool

Disk

INPUT(A)

Mem A | MemB

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,)

t:=t*2

WRITE(B, 1)

(0O (0O |0 |0 |0 |0 | O

OUTPUT(A)

| 0O |00 | 0O |00 |0 | 0|0

OUTPUT(B)

-
(o))

COMMIT

February 21, 2024

CSE 444 — Transaction Recovery 1

24

Is this bad ?

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,)

t:=t*2

WRITE(B, 1)

(0O (0O |0 |0 |0 |0 | O

OUTPUT(A)

—
o

| 0O |00 | 0O |00 |0 | 0|0

OUTPUT(B)

—
o

COMMIT

February 21, 2024

CSE 444 — Transaction Recovery 1

25

Is this bad ?

Yes it’s bad: A=16, B=8....

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,)

t:=t*2

WRITE(B, 1)

(0O (0O |0 |0 |0 |0 | O

OUTPUT(A)

—
o

| 0O |00 | 0O |00 |0 | 0|0

OUTPUT(B)

—
o

COMMIT

February 21, 2024

CSE 444 — Transaction Recovery 1

26

Is this bad ?

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,)

t:=t*2

WRITE(B, 1)

(0O (0O |0 |0 |0 |0 | O

OUTPUT(A)

—
o

| 0O |00 | 0O |00 |0 | 0|0

OUTPUT(B)

—
o

‘Ig%

COMMIT

February 21, 2024

CSE 444 — Transaction Recovery 1

Crash !

27

Is this bad ? Yes it's bad: A=B=16, but not committed

Action MemA | MemB | Disk A | DiskB
INPUT(A)
READ(A,1)

t:=t*2

WRITE(A,t)
INPUT(B)
READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2024 CSE 444 — Transaction Recovery 1 28

(0O (0O |0 |0 |0 |0 | O

| 0O |00 | 0O |00 |0 | 0|0

—
o

RN
(@)
RN
®

Crash!

Is this bad ?

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,)

t:=t*2

WRITE(B, 1)

(0O (0O |0 |0 |0 |0 | O

| 0O [0 |00 |00 | 0|0

OUTPUT(A)

—
o

i

OUTPUT(B)

—
o

RN
(@))

COMMIT

February 21, 2024

CSE 444 — Transaction Recovery 1

29

Is this bad ?

No: that's OK

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,)

t:=t*2

WRITE(B, 1)

(0O (0O |0 |0 |0 |0 | O

| 0O [0 |00 |00 | 0|0

OUTPUT(A)

—
o

(00
ﬂ%
A4

OUTPUT(B)

—
o

RN
(@))

COMMIT

February 21, 2024

CSE 444 — Transaction Recovery 1

30

' OUTPUT can also happen after COMMIT (details coming) -

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B,)

t:=t*2

WRITE(B, 1)

(0O (0O |0 |0 |0 |0 | O

| 0O [0 |00 |00 | 0|0

COMMIT

OUTPUT(A)

16

OUTPUT(B)

February 21, 2024

CSE 444 — Transaction Recovery 1

16

16

31

' OUTPUT can also happen after COMMIT (details coming) -

Action Disk A | Disk B
INPUT(A) 8 8
READ(A 1) 8 8

=+ 8 8
WRITE(A) 8 8
INPUT(B) 8 8
READ(B,) 8 8
=+ 8 8
WRITE(B.1) 8 8
COMMIT
OUTPUT(A) 16 8 gﬁ
OUTPUT(B) 16 16

February 21, 2024 CSE 444 — Transaction Recovery 1 Ky

Atomic Transactions

* FORCE or NO-FORCE

« Should all updates of a transaction be forced to disk
before the transaction commits?

= STEAL or NO-STEAL

« Can an update made by an uncommitted transaction
overwrite the most recent committed value of a data
item on disk?

February 21, 2024 CSE 444 — Transaction Recovery 1 33

Force/No-steal (most strict)

* FORCE: Pages of committed transactions must be
forced to disk before commit

* NO-STEAL.: Pages of uncommitted transactions
cannot be written to disk

Easy to implement (how?) and ensures atomicity

February 21, 2024 CSE 444 — Transaction Recovery 1 34

No-Force/Steal (least strict)

* NO-FORCE: Pages of committed transactions
need not be written to disk

= STEAL: Pages of uncommitted transactions may
be written to disk

In both cases, need a Write Ahead Log (WAL)
to provide atomicity in face of failures

February 21, 2024 CSE 444 — Transaction Recovery 1 35

Write-Ahead Log (WAL)

The Log: append-only file containing log records
» Records every single action of every TXN

» Forces log entries to disk as needed

= After a system crash, use log to recover

Three types: UNDO, REDO, UNDO-REDO
Aries: is an UNDO-REDO log

February 21, 2024 CSE 444 — Transaction Recovery 1 36

Policies and Logs

NO-STEAL STEAL
FORCE Lab 3 Undo Log
NO-FORCE Redo Log Undo-Redo Log

February 21, 2024 CSE 444 — Transaction Recovery 1 37

"UNDO" Log

FORCE and STEAL

February 21, 2024 CSE 444 — Transaction Recovery 1 38

Undo Logging

Log records

» <START T>
 transaction T has begun

» <COMMIT T>
T has committed

» <ABORT T>
* T has aborted

s <T X, V>
« T has updated element X, and its o/d value was v
» I[dempotent, physical log records

February 21, 2024 CSE 444 — Transaction Recovery 1

39

Action t MemA | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>

February 21, 2024

CSE 444 — Transaction Recovery 1

40

Action t MemA | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8 A
OUTPUT(B) 16 16 16 16 16 %
COMMIT <COMMIT T>

WHAT DO WE DO ?

February

A44 — Transaction Recovery 1

41

Action t MemA | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 S
COMMIT <COMMIT T>

WHAT DO WE DO ?

February

444

We UNDO by setting B=8 and A=8

42

Action t MemA | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>
What do we do now ? Crasht

February 4 — Transaction Recovery 1 43

Action t MemA | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>
What do we do now ? Nothing: log contains COMMIT -
February 4 —Tra 44

After Crash

* This is all we see (for example):

CEYSELITCE | <sTaRTT

8 16 <T,A,8>
<T,B,8>

February 21, 2024 CSE 444 — Transaction Recovery 1

After Crash

* This is all we see (for example):

CEYSELITCE | <sTaRTT

8 16 <T,A,8>
<T,B,8>

February 21, 2024 CSE 444 — Transaction Recovery 1

After Crash

* This is all we see (for example):
* Need to step through the log

CEYSELITCE | <sTaRTT

8 16 <T,A,8>
<T,B,8>

February 21, 2024 CSE 444 — Transaction Recovery 1

After Crash

* This is all we see (for example):
* Need to step through the log

CEYSELITCE | <sTaRTT

8 16 <T,A,8>
<T,B,8>

 What direction?

February 21, 2024 CSE 444 — Transaction Recovery 1

After Crash

* This is all we see (for example):
* Need to step through the log

CEYSELITCE | <sTaRTT]

8 16 <T,A,8>
<T,B,8>

 What direction?

* In UNDO log, we start at the most
recent and go backwards in time

February 21, 2024 CSE 444 — Transaction Recovery 1

After Crash

* This is all we see (for example):
* Need to step through the log

CEYSELITCE | <sTaRTT]

8 16 <T,A,8>

 What direction?

* In UNDO log, we start at the most
recent and go backwards in time

February 21, 2024 CSE 444 — Transaction Recovery 1

After Crash

* This is all we see (for example):
* Need to step through the log

CEYSILEITCEN | <sTaRTT>]

8 16 <T,A,8>

 What direction?

* In UNDO log, we start at the most
recent and go backwards in time

February 21, 2024 CSE 444 — Transaction Recovery 1

After Crash

* This is all we see (for example):
* Need to step through the log

CEYSILITCEN | <sTaRTT]

8 8 <T,A,8>

 What direction?

* In UNDO log, we start at the most
recent and go backwards in time

February 21, 2024 CSE 444 — Transaction Recovery 1

After Crash

* This is all we see (for example):
* Need to step through the log

CEYSILEITCE | <sTARTT]

8 8 <TA8>

<T,B,8>

 What direction?

* In UNDO log, we start at the most
recent and go backwards in time

February 21, 2024 CSE 444 — Transaction Recovery 1

After Crash

= |[f we see NO Commit statement:
« We UNDO both changes: A=8, B=8

* The transaction is atomic, since none of its actions have been
executed

= |n we see that T has a Commit statement
« We don’t undo anything

* The transaction is atomic, since both it’'s actions have been
executed

February 21, 2024 CSE 444 — Transaction Recovery 1

Recovery with Undo Log

After system’s crash, run recovery manager

= Decide for each transaction T whether it is
completed or not

« <START T>....<COMMIT T>....

= yes
e <START T>...<ABORT T>....... = yes
e <START 1>, = no

» Undo all modifications by incomplete transactions

February 21, 2024

Recovery with Undo Log

Recovery manager:

» Read log from the end; cases:
<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed
<T,X,v>:if T is not completed

then write X=v to disk

else ignore
<START T>: ignore

February 21, 2024

Recovery with Undo Log

Question1: Which updates
are undone ?
<T6,X6,v6>

Question 2:

A How far back do we need to
<START T5> read in the log ?
<START T4>
<T1,X1,v1>
<T5,X5,v5> Question 3:
<T4 X4 v4> What happens if second crash during
<COMMIT T5> recovery’?
<T3,X3,v3>
<T2,X2,v2>
<l

Crash !

February 21, 2024 4 ansaction Recovery 1

Recovery with Undo Log

Question1: Which updates
are undone ?
<T6,X6,v6>

Question 2:

A How far back do we need to
<START T5> read in the log ?
<START T4> To the beginning.
<T1,X1,v1>
<T5,X5,v5> Question 3:
<T4 X4 v4> What happens if second crash during
<COMMIT T5> recovery’?
<T3,X3,v3>
<T2,X2,v2>
w

Crash !

February 21, 2024 4 ansaction Recovery 1

Recovery with Undo Log

February 21, 2024

Question1: Which updates
are undone ?
<T6,X6,v6> _

Question 2:
How far back do we need to
<START T5> read in the log ?
<START T4> To the beginning.
<T1,X1,v1> _
<T5,X5,v5> Question 3:
<T4 X4 v4> What happens if second crash during
<COMMIT T5> recovery?
<T3,X3,v3> No problem! Log records are
<T2,X2,v2> idempotent. Can reapply.

w

Crash !

ansaction Recovery 1

Action t MemA | Mem B | Disk A | Disk B UNDO Log
Jj p—— <START T>
INPUT(A) // When must 8
READ(A1) 3 K we force pages g
to disk ?
t:=t*2 16 - | 8
WRITEAY | 16 16 8 8 <TA8>
INPUTB) | 16 16 8 8 8
READ(B,) 8 16 8 8 8 @)
-
t:=t*2 16 16 8 8 8
WRITEBH | 16 16 16 8 8 <T.B,8>
v
OUTPUT(A) |- 16 16 16 16 8
sl
OUMUT(B) 2 16 16 16 16 16
COMMIT <COMMIT T>

February 21, 2024 CSE 444 — Transaction Recovery 1

Action t MemA | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READAL | 8 8 8 8
b=t 16 8 8 8
WRITEAD | 16 16 8 8 { <TA.8> >
INPUT(B) | 16 16 8 8 8
READB) | 8 16 8 8 8
b=t 16 8 8 8
WRITE(B 1) 16 16 8 8 { <TB,8> >
\()UTPUT@ 16 16 | 16— 16 8
@W@r/m/ 16 16 16 16
COMMIT | FORCE {<COMMIT T

— RULES: log entry before OUTPUT before COMMIT h
February 21, 2024

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be written to
disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must be written
to disk before <COMMIT T>

» Hence: OUTPUTs are done early, before the

transaction commits

February 21, 2024 CSE 444 — Transaction Recovery 1 62

Checkpointing

Checkpoint the database periodically

» Stop accepting new transactions

= Wait until all current transactions complete
» Flush log to disk

» Write a <CKPT> log record, flush

= Resume transactions

February 21, 2024 CSE 444 — Transaction Recovery 1

63

Undo Recovery with Checkpointing

<T9,X9,v9> |
Y > other transactions

During recovery, (all completed)
Can stop at first <CKPT> 7
<CKPT> <START T2> \
<START T3
4 <START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5> > transactions T2,T3,T4,T5
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

February 21, 2024 CSE 444 — Transaction Recovery 1

Nonquiescent Checkpointing

» Problem with checkpointing: database freezes
during checkpoint

» Would like to checkpoint while database is
operational

» |dea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

February 21, 2024 CSE 444 — Transaction Recovery 1 65

Nonquiescent Checkpointing

= Write a <START CKPT(T1,...,Tk)>
where T1,..., Tk are all current active transactions.

Flush log to disk

» Continue normal operation

= \When all of T1,...,Tk have completed, write <END
CKPT>, flush log to disk

February 21, 2024 CSE 444 — Transaction Recovery 1 66

Undo with Nonquiescent Checkpointing

If we crash here:
Need to read
Back to start of
T4, T5, T6

If we crash here:
Need to read only to

<START CKPT T4.> —— ..

<START CKPT T4, T5, T6>

<END CKPT>

February 21, 2024

CSE 444 — Transaction Recovery 1

>earlier transactions plus
T4, T5, T6

> T4, T5, T6, plus
later transactions

+ later transactions

Implementing ROLLBACK

= Recall: a transaction can end in COMMIT or
ROLLBACK

*» |[dea: use the undo-log to implement ROLLBACK

" How ?
* LSN = Log Sequence Number

* Log entries for the same transaction are linked, using
the LSN's

* Read log in reverse, using LSN pointers

February 21, 2024 CSE 444 — Transaction Recovery 1 68

|mp|emnn1‘inn PNl I RACK

<T9,X9,v9>

= Re

RO (all leted
all completle
= |de (<CKPT>p) CK
<START T2
<START T3
| | <START T5>
« | | <START T4> sing
{ | <T1X1v1>
<T5,X5,v5>
<T2,X1,v2>
<T4 X4 v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

February 21, 2024 CSE 444 — Iransaction Recovery 1 69

REDO

NO-FORCE and NO-STEAL

February 21, 2024 CSE 444 — Transaction Recovery 1

Action t Mem A | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

February 21, 2024

CSE 444 — Transaction Recovery 1

71

Is this bad ?

Action t Mem A | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16
OUTPUT(B) 16 16 16 16

February 21, 2024

CSE 444 — Transaction Recovery 1

8
Crash!
1 szlii%

Is this bad ? Yes, it's bad: A=16, B=8
Action t Mem A | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16
OUTPUT(B) 16 16 16 16

February 21, 2024

CSE 444 — Transaction Recovery 1

8
Crash!

Is this bad ?

Action t Mem A | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT %
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 ‘

February 21, 2024 CSE 444 — Transaction Recovery 1

. Is this bad ? _ Yes, it's bad: lost update I

Action t Mem A | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT %
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 ‘

February 21, 2024 CSE 444 — Transaction Recovery 1

Is this bad ?

Action t Mem A | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

February 21, 2024

CSE 444 — Transaction Recovery 1

|\
Crash !

Is this bad ? No: that's OK.

|\
Crash !

Action t Mem A | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

February 21, 2024

CSE 444 — Transaction Recovery 1

7

