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Database System Internals
Transactions: Recovery (part 1

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle
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Main textbook (Garcia-Molina)
*»Ch.17.2-4, 18.1-3, 18.8-9
Second textbook (Ramakrishnan)

= Ch. 16-18

Also: M. J. Franklin. Concurrency Control and
Recovery. The Handbook of Computer Science and
Engineering, A. Tucker, ed., CRC Press, Boca
Raton, 1997.
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Transaction Management

Two parts:

= Concurrency control:  ACID
» Recovery from crashes: ACID

We already discussed concurrency control
You are implementing locking in lab3

Today, we start recovery
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Type of Crash Prevention

Constraints and

Wrong data entry Data cleaning

Redundancy:

Disk crashes e.g. RAID, archive

Remote backups or

Data center failures .
replicas

System failures: DATABASE
e.g. power RECOVERY

February 21, 2024 CSE 444 — Transaction Recovery 1 6



System Crash

Client 1:

BEGIN TRANSACTION
UPDATE Account1

SET balance= balance — 500

UPDATE Account2
SET balance = balance + 500
COMMIT
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System Failures

= Each transaction has internal state

* When system crashes, internal state is lost
« Don’t know which parts executed and which didn’t
* Need ability to undo and redo
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Buffer Manager Review

READ
WRITE Page requests from higher-level code
| Files and access methods
Buffer pool Buffer pool manager
Disk page _
Pag Main
Free frame—— memory
INPUT | choice of frame dictated
OUTPUT by replacement policy

Disk = collection

of blocks i 1 page corresponds

Data must be in RAM for DBMS to operate on it! to 1 disk block

Buffer pool = table of <frame#, pageid> pairs
February 21, 2024 CSE 444 — Transaction Recovery 1




Buffer Manager Review

» Enables higher layers of the DBMS to assume that
needed data is in main memory

» Caches data in memory. Problems when crash
OCCUTS:

1. If committed data was not yet written to disk
2. If uncommitted data was flushed to disk
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Transactions

» Assumption: the database is composed of
elements.

* 1 element can be either:
* 1 page = physical logging
1 record = logical logging

" In Lab 4 we use page-level elements

February 21, 2024 CSE 444 — Transaction Recovery 1 11



Primitive Operations of Transactions

» READ(X, 1)

» copy element X to transaction local variable t

= WRITE(X, 1)

 copy transaction local variable t to element X

= INPUT(X)

* read element X to memory buffer

= OUTPUT(X)

e write element X to disk
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Running Example

READ(A,);
t:=1*2;
WRITE(A,1);
READ(B,t);
t:=1*2;
WRITE(B,t)
COMMIT;

BEGIN TRANSACTION

Initially, A=B=8.

Atomicity requires that either
(1) T commits and A=B=16, or
(2) T does not commit and A=B=8.

February 21, 2024
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Running Example

BEGIN TRANSACTION
READ(A,t);
t:=1*2;
WRITE(A,1);
READ(B,t);

Initially, A=B=8.

Atomicity requires that either
(1) T commits and A=B=16, or
(2) T does not commit and A=B=8.

February 21, 2024
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Transaction

Buffer pool

Disk

INPUT(A)

Mem A | MemB

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B, )

t:=t*2

WRITE(B, 1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2024
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Transaction

Buffer pool

INPUT(A)

Mem A | MemB

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B, )

t:=t*2

WRITE(B, 1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2024
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Transaction

Buffer pool

INPUT(A)

Mem A | MemB

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B, )

t:=t*2

WRITE(B, 1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2024
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Transaction

Buffer pool

Disk

INPUT(A)

Mem A | MemB

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

c [ 00| O

o | 00 | CO

INPUT(B)

READ(B, )

t:=t*2

WRITE(B, 1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2024
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Transaction

Buffer pool

Disk

INPUT(A)

Mem A | MemB

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

c (0| 00| 0| OO

c | 0O |0 | 0|00

READ(B, )

t:=t*2

WRITE(B, 1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2024
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Transaction

Buffer pool

Disk

INPUT(A)

Mem A | MemB

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B, )

o (0O | 00| 0| 0|0

| 0O |0 |0 | 0|0

t:=t*2

WRITE(B, 1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2024
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Transaction

Buffer pool

Disk

INPUT(A)

Mem A | MemB

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B, )

t:=t*2

o (0O (0O | 0|0 | 0|0

o (00 [0 | 0O |0 |0 | O

WRITE(B, 1)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2024
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Transaction

Buffer pool

Disk

INPUT(A)

Mem A | MemB

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B, )

t:=t*2

WRITE(B, 1)

(0O (0O |0 |0 |0 |0 | O

| 0O [0 |00 |00 | 0|0

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2024
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Transaction

Buffer pool

Disk

INPUT(A)

Mem A | MemB

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B, )

t:=t*2

WRITE(B, 1)

(0O (0O |0 |0 |0 |0 | O

OUTPUT(A)

| 0O |00 | 0O |00 |0 | 0|0

OUTPUT(B)

COMMIT

February 21, 2024
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Transaction

Buffer pool

Disk

INPUT(A)

Mem A | MemB

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B, )

t:=t*2

WRITE(B, 1)

(0O (0O |0 |0 |0 |0 | O

OUTPUT(A)

| 0O |00 | 0O |00 |0 | 0|0

OUTPUT(B)

-
(o))

COMMIT

February 21, 2024
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Is this bad ?

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B, )

t:=t*2

WRITE(B, 1)

(0O (0O |0 |0 |0 |0 | O

OUTPUT(A)

—
o

| 0O |00 | 0O |00 |0 | 0|0

OUTPUT(B)

—
o

COMMIT

February 21, 2024
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Is this bad ?

Yes it’s bad: A=16, B=8....

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B, )

t:=t*2

WRITE(B, 1)

(0O (0O |0 |0 |0 |0 | O

OUTPUT(A)

—
o

| 0O |00 | 0O |00 |0 | 0|0

OUTPUT(B)

—
o

COMMIT

February 21, 2024
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Is this bad ?

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B, )

t:=t*2

WRITE(B, 1)

(0O (0O |0 |0 |0 |0 | O

OUTPUT(A)

—
o

| 0O |00 | 0O |00 |0 | 0|0

OUTPUT(B)

—
o

‘Ig%

COMMIT

February 21, 2024
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Is this bad ? Yes it's bad: A=B=16, but not committed

Action MemA | MemB | Disk A | DiskB
INPUT(A)
READ(A,1)

t:=t*2

WRITE(A,t)
INPUT(B)
READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

COMMIT

February 21, 2024 CSE 444 — Transaction Recovery 1 28
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Is this bad ?

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B, )

t:=t*2

WRITE(B, 1)

(0O (0O |0 |0 |0 |0 | O

| 0O [0 |00 |00 | 0|0

OUTPUT(A)

—
o

i

OUTPUT(B)

—
o

RN
(@))

COMMIT

February 21, 2024
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Is this bad ?

No: that's OK

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B, )

t:=t*2

WRITE(B, 1)

(0O (0O |0 |0 |0 |0 | O

| 0O [0 |00 |00 | 0|0

OUTPUT(A)

—
o

(00
ﬂ%
A4

OUTPUT(B)

—
o

RN
(@))

COMMIT

February 21, 2024
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' OUTPUT can also happen after COMMIT (details coming) -

Action
INPUT(A)

Disk A

Disk B

READ(At)

t:=t*2

WRITE(A,1)

INPUT(B)

READ(B, )

t:=t*2

WRITE(B, 1)

(0O (0O |0 |0 |0 |0 | O

| 0O [0 |00 |00 | 0|0

COMMIT

OUTPUT(A)

16

OUTPUT(B)

February 21, 2024
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' OUTPUT can also happen after COMMIT (details coming) -

Action Disk A | Disk B
INPUT(A) 8 8
READ(A 1) 8 8

=+ 8 8
WRITE(A ) 8 8
INPUT(B) 8 8
READ(B, ) 8 8
=+ 8 8
WRITE(B.1) 8 8
COMMIT
OUTPUT(A) 16 8 gﬁ
OUTPUT(B) 16 16

February 21, 2024 CSE 444 — Transaction Recovery 1 Ky



Atomic Transactions

* FORCE or NO-FORCE

« Should all updates of a transaction be forced to disk
before the transaction commits?

= STEAL or NO-STEAL

« Can an update made by an uncommitted transaction
overwrite the most recent committed value of a data
item on disk?

February 21, 2024 CSE 444 — Transaction Recovery 1 33



Force/No-steal (most strict)

* FORCE: Pages of committed transactions must be
forced to disk before commit

* NO-STEAL.: Pages of uncommitted transactions
cannot be written to disk

Easy to implement (how?) and ensures atomicity

February 21, 2024 CSE 444 — Transaction Recovery 1 34



No-Force/Steal  (least strict)

* NO-FORCE: Pages of committed transactions
need not be written to disk

= STEAL: Pages of uncommitted transactions may
be written to disk

In both cases, need a Write Ahead Log (WAL)
to provide atomicity in face of failures

February 21, 2024 CSE 444 — Transaction Recovery 1 35



Write-Ahead Log (WAL)

The Log: append-only file containing log records
» Records every single action of every TXN

» Forces log entries to disk as needed

= After a system crash, use log to recover

Three types: UNDO, REDO, UNDO-REDO
Aries: is an UNDO-REDO log

February 21, 2024 CSE 444 — Transaction Recovery 1 36



Policies and Logs

NO-STEAL STEAL
FORCE Lab 3 Undo Log
NO-FORCE Redo Log Undo-Redo Log

February 21, 2024 CSE 444 — Transaction Recovery 1 37



"UNDO" Log

FORCE and STEAL

February 21, 2024 CSE 444 — Transaction Recovery 1 38



Undo Logging

Log records

» <START T>
 transaction T has begun

» <COMMIT T>
T has committed

» <ABORT T>
* T has aborted

s <T X, V>
« T has updated element X, and its o/d value was v
» I[dempotent, physical log records

February 21, 2024 CSE 444 — Transaction Recovery 1
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Action t MemA | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>

February 21, 2024
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Action t MemA | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8 A
OUTPUT(B) 16 16 16 16 16 %
COMMIT <COMMIT T>

WHAT DO WE DO ?

February

A44 — Transaction Recovery 1
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Action t MemA | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 S
COMMIT <COMMIT T>

WHAT DO WE DO ?

February

444

We UNDO by setting B=8 and A=8

42



Action t MemA | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>
What do we do now ? Crasht

February 4 — Transaction Recovery 1 43



Action t MemA | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
COMMIT <COMMIT T>
What do we do now ? Nothing: log contains COMMIT -
February 4 —Tra 44



After Crash

* This is all we see (for example):

CEYSELITCE | <sTaRTT

8 16 <T,A,8>
<T,B,8>

February 21, 2024 CSE 444 — Transaction Recovery 1



After Crash

* This is all we see (for example):

CEYSELITCE | <sTaRTT

8 16 <T,A,8>
<T,B,8>
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After Crash

* This is all we see (for example):
* Need to step through the log

CEYSELITCE | <sTaRTT

8 16 <T,A,8>
<T,B,8>

February 21, 2024 CSE 444 — Transaction Recovery 1



After Crash

* This is all we see (for example):
* Need to step through the log

CEYSELITCE | <sTaRTT

8 16 <T,A,8>
<T,B,8>

 What direction?
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After Crash

* This is all we see (for example):
* Need to step through the log

CEYSELITCE | <sTaRTT ]

8 16 <T,A,8>
<T,B,8>

 What direction?

* In UNDO log, we start at the most
recent and go backwards in time
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After Crash

* This is all we see (for example):
* Need to step through the log

CEYSELITCE | <sTaRTT ]

8 16 <T,A,8>

 What direction?

* In UNDO log, we start at the most
recent and go backwards in time
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After Crash

* This is all we see (for example):
* Need to step through the log

CEYSILEITCEN | <sTaRTT> ]

8 16 <T,A,8>

 What direction?

* In UNDO log, we start at the most
recent and go backwards in time
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After Crash

* This is all we see (for example):
* Need to step through the log

CEYSILITCEN | <sTaRTT ]

8 8 <T,A,8>

 What direction?

* In UNDO log, we start at the most
recent and go backwards in time
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After Crash

* This is all we see (for example):
* Need to step through the log

CEYSILEITCE | <sTARTT ]

8 8 <TA8>

<T,B,8>

 What direction?

* In UNDO log, we start at the most
recent and go backwards in time
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After Crash

= |[f we see NO Commit statement:
« We UNDO both changes: A=8, B=8

* The transaction is atomic, since none of its actions have been
executed

= |n we see that T has a Commit statement
« We don’t undo anything

* The transaction is atomic, since both it’'s actions have been
executed

February 21, 2024 CSE 444 — Transaction Recovery 1



Recovery with Undo Log

After system’s crash, run recovery manager

= Decide for each transaction T whether it is
completed or not

« <START T>....<COMMIT T>....

= yes
e <START T>...<ABORT T>....... = yes
e <START 1>, = no

» Undo all modifications by incomplete transactions

February 21, 2024



Recovery with Undo Log

Recovery manager:

» Read log from the end; cases:
<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed
<T,X,v>:if T is not completed

then write X=v to disk

else ignore
<START T>: ignore

February 21, 2024



Recovery with Undo Log

Question1: Which updates
are undone ?
<T6,X6,v6>

Question 2:

A How far back do we need to
<START T5> read in the log ?
<START T4>
<T1,X1,v1>
<T5,X5,v5> Question 3:
<T4 X4 v4> What happens if second crash during
<COMMIT T5> recovery’?
<T3,X3,v3>
<T2,X2,v2>
<l

Crash !

February 21, 2024 4 ansaction Recovery 1




Recovery with Undo Log

Question1: Which updates
are undone ?
<T6,X6,v6>

Question 2:

A How far back do we need to
<START T5> read in the log ?
<START T4> To the beginning.
<T1,X1,v1>
<T5,X5,v5> Question 3:
<T4 X4 v4> What happens if second crash during
<COMMIT T5> recovery’?
<T3,X3,v3>
<T2,X2,v2>
w

Crash !
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Recovery with Undo Log

February 21, 2024

Question1: Which updates
are undone ?
<T6,X6,v6> _

Question 2:
How far back do we need to
<START T5> read in the log ?
<START T4> To the beginning.
<T1,X1,v1> _
<T5,X5,v5> Question 3:
<T4 X4 v4> What happens if second crash during
<COMMIT T5> recovery?
<T3,X3,v3> No problem! Log records are
<T2,X2,v2> idempotent. Can reapply.

w

Crash !

ansaction Recovery 1



Action t MemA | Mem B | Disk A | Disk B UNDO Log
Jj p—— <START T>
INPUT(A) // When must 8
READ(A1) 3 K we force pages g
to disk ?
t:=t*2 16 - | 8
WRITEAY | 16 16 8 8 <TA8>
INPUTB) | 16 16 8 8 8
READ(B, ) 8 16 8 8 8 @)
-
t:=t*2 16 16 8 8 8
WRITEBH | 16 16 16 8 8 <T.B,8>
v
OUTPUT(A) |- 16 16 16 16 8
sl
OUMUT(B) 2 16 16 16 16 16
COMMIT <COMMIT T>

February 21, 2024 CSE 444 — Transaction Recovery 1



Action t MemA | Mem B | Disk A | Disk B UNDO Log
<START T>
INPUT(A) 8 8 8
READAL | 8 8 8 8
b=t 16 8 8 8
WRITEAD | 16 16 8 8 { <TA.8> >
INPUT(B) | 16 16 8 8 8
READB) | 8 16 8 8 8
b=t 16 8 8 8
WRITE(B 1) 16 16 8 8 { <TB,8> >
\()UTPUT@ 16 16 | 16— 16 8
@W@r/m/ 16 16 16 16
COMMIT | FORCE {<COMMIT T

— RULES: log entry before OUTPUT before COMMIT h
February 21, 2024




Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be written to
disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must be written
to disk before <COMMIT T>

» Hence: OUTPUTs are done early, before the

transaction commits

February 21, 2024 CSE 444 — Transaction Recovery 1 62



Checkpointing

Checkpoint the database periodically

» Stop accepting new transactions

= Wait until all current transactions complete
» Flush log to disk

» Write a <CKPT> log record, flush

= Resume transactions

February 21, 2024 CSE 444 — Transaction Recovery 1
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Undo Recovery with Checkpointing

<T9,X9,v9> |
Y > other transactions

During recovery, (all completed)
Can stop at first <CKPT> 7
<CKPT> <START T2> \
<START T3
4 <START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5> > transactions T2,T3,T4,T5
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

February 21, 2024 CSE 444 — Transaction Recovery 1



Nonquiescent Checkpointing

» Problem with checkpointing: database freezes
during checkpoint

» Would like to checkpoint while database is
operational

» |dea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active
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Nonquiescent Checkpointing

= Write a <START CKPT(T1,...,Tk)>
where T1,..., Tk are all current active transactions.

Flush log to disk

» Continue normal operation

= \When all of T1,...,Tk have completed, write <END
CKPT>, flush log to disk
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Undo with Nonquiescent Checkpointing

If we crash here:
Need to read
Back to start of
T4, T5, T6

If we crash here:
Need to read only to

<START CKPT T4.> —— ..

<START CKPT T4, T5, T6>

<END CKPT>

February 21, 2024
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T4, T5, T6

> T4, T5, T6, plus
later transactions
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Implementing ROLLBACK

= Recall: a transaction can end in COMMIT or
ROLLBACK

*» |[dea: use the undo-log to implement ROLLBACK

" How ?
* LSN = Log Sequence Number

* Log entries for the same transaction are linked, using
the LSN's

* Read log in reverse, using LSN pointers
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|mp|emnn1‘inn PNl I RACK

<T9,X9,v9>

= Re

RO (all leted
all completle
= |de (<CKPT>p ) CK
<START T2
<START T3
| | <START T5>
« | | <START T4> sing
{ | <T1X1v1>
<T5,X5,v5>
<T2,X1,v2>
<T4 X4 v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>
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REDO

NO-FORCE and NO-STEAL
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Action t Mem A | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
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Is this bad ?

Action t Mem A | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16
OUTPUT(B) 16 16 16 16
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Is this bad ? Yes, it's bad: A=16, B=8
Action t Mem A | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16
OUTPUT(B) 16 16 16 16
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Is this bad ?

Action t Mem A | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT %
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 ‘
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. Is this bad ? _ Yes, it's bad: lost update I

Action t Mem A | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT %
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 ‘

February 21, 2024 CSE 444 — Transaction Recovery 1



Is this bad ?

Action t Mem A | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
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Is this bad ? No: that's OK.

|\
Crash !

Action t Mem A | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16
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