o

Shuffle S,S;, S on (0

ssssioald
Numberofsession
oate
511 [expermentio
=
1 S—
e 71'4!"'-4
. [—— .-r —
e fuo e 4 J4RXER
71 [sessionid i ']
NumberOfTral Resslurion 12
#ea [setup fite ‘.n
#K3 | subjecti SetupCondtion | B Gonn\ A7, | | \eAmdd / /| Matioy | =
etupharker (| AU
Recordedovietic S\ SR S7NOS /L i a1 A
! N {5 -
“""T 3 : EHII . (a) Traditional parallel query plan
TRUe Timecowse Tl _Tajecton o l)—.". g
e
[S ~!_
P9 o C—
P P [e
FX2 | TimecoursetD FK2 | TrajectorylD v
' (
Timecourse Trectory
7% [Timecouneo | Teiectored phe=sszsiln
Frequency Frequency o
Segmentio seqmentd ey
Kndofoats Kindotoat
NErames Markerld Lo
) P NFrames £Cube shuffle-based parallel g
) Dt

Database System Internals

Optimistic Concurrency Control

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

February 12, 2024 CSE 444 - Optimistic CC

About Lab 3

= In lab 3, we implement transactions

= Focus on concurrency control
* Want to run many transactions at the same time
* Transactions want to read and write same pages
* Will use locks to ensure conflict serializable execution

e Use strict 2PL

= Build your own lock manager
» Understand how locking works in depth

« Ensure transactions rather than threads hold locks

* Many threads can execute different pieces of the same transaction

* Need to detect deadlocks and resolve them by aborting a
transaction

* But use Java synchronization to protect your data
structures

February 12, 2024 CSE 444 - Optimistic CC 3

= Several types of schedules:
« Serializable, conflict serializable, view serializable
» Recoverable, without cascading aborts

= 2PL guarantees conflict serializable schedules
= Strict 2PL also guarantees no-cascading-aborts

- ;.ocli(ing manager: inserts lock/unlock, manages
ocks

= Types of locks: shared, exclusive

February 12, 2024 CSE 444 - Optimistic CC 4

|Isolation Levels in SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

February 12, 2024

Isolation Level Design Spectrum

FAST l CORRECT

February 12, 2024 Isolation Levels)

1. Isolation Level: Dirty Reads

* “Long duration” WRITE locks
o Strict 2PL

= No READ locks
» Read-only transactions are never delayed

Possible problems:
dirty and inconsistent reads

February 12, 2024

2. Isolation Level: Read Committed

* “Long duration” WRITE locks
o Strict 2PL

» “Short duration” READ locks
» Only acquire lock while reading (not 2PL)

Unrepeatable reads
When reading same element twice,
may get two different values

February 12, 2024

3. Isolation Level: Repeatable Read

* “Long duration” WRITE locks
« Strict 2PL

* “Long duration” READ locks
« Strict 2PL

This is not serializable yet !!!

February 12, 2024

4. Isolation Level Serializable

* “Long duration” WRITE locks
« Strict 2PL

* “Long duration” READ locks
« Strict 2PL

= Predicate locking
* To deal with phantoms

February 12, 2024

READ-ONLY Transactions

Client 1: START TRANSACTION
INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE FROM Product
WHERE price <=0.99
COMMIT

Client 2: SET TRANSACTION READ ONLY
START TRANSACTION
SELECT count(*)
FROM Product

May improve
performance

SELECT count(*)
FROM SmallProduct
COMMIT

February 12, 2024

February 12, 2024

Commercial Systems

Always check documentation!
= DB2: Strict 2PL
= SQL Server:

e Strict 2PL for standard 4 levels of isolation

* Multiversion concurrency control for snapshot
isolation

: Post?reSQL: Snapshot isolation; recently:
seralizable Snapshot isolation (!)

= Oracle: Snapshot isolation

Pessimistic vs. Optimistic

= Pessimistic CC (locking)
* Prevents unserializable schedules
 Never abort for serializability (but may abort for

deadlocks)

* Best for workloads with high levels of contention

= Optimistic CC (timestamp, multi-version,
validation)

« Assume schedule will be serializable
» Abort when conflicts detected
» Best for workloads with low levels of contention

February 12, 2024 CSE 444 - Optimistic CC 13

= Concurrency control by timestamps (18.8)
= Concurrency control by validation (18.9)

= Snapshot Isolation

February 12, 2024 CSE 444 - Optimistic CC 14

Example with Multiple Transactions

T1

Growing
phase

Shrinking |
phase

Equivalent to each transaction executing entirely

12

Unlocks second so

for T3

perhaps was waiting

T3

Unlocks first
Was not waiting
—for anyone

the moment it enters shrinking phase

February 12, 2024

CSE 444 - Locking

T4

= Each transaction receives unique timestamp TS(T)
Could be:

= The system’s clock
= A unique counter, incremented by the scheduler

February 12, 2024 CSE 444 - Optimistic CC 16

Main invariant:

The timestamp order defines
the serialization order of the transaction

Will generate a schedule that is view-equivalent
to a serial schedule, and recoverable

February 12, 2024

» Scheduler receives a request, r{(X) or w(X)
» Should it allow it to proceed? Wait? Abort?
» Consider these cases:

wyulX) ... rr(X)

"U(X) WT(X) af;'Jffh'iVéi?

wulX) ... wy(X)

February 12, 2024 CSE 444 - Optimistic CC

» Scheduler receives a request, r{(X) or w(X)
» Should it allow it to proceed? Wait? Abort?
» Consider these cases:

wyulX) ... rr(X)

"U(X) WT(X) af;'Jffh'Zvéi?

wulX) ... wy(X)

START(U), ...,START(T), ..., wy(X), ..., r:(X)

February 12, 2024 CSE 444 - Optimistic CC

» Scheduler receives a request, r{(X) or w(X)
» Should it allow it to proceed? Wait? Abort?
» Consider these cases:

wyulX) ... rr(X)

"U(X) WT(X) af;'Jffh'Zvéi?

wulX) ... wy(X)

OK

START(U), ...,START(T), ..., wy(X), ..., r:(X)

February 12, 2024 CSE 444 - Optimistic CC

» Scheduler receives a request, r{(X) or w(X)
» Should it allow it to proceed? Wait? Abort?
» Consider these cases:

wyulX) ... rr(X)

"U(X) WT(X) alf;mivé??

wulX) ... wy(X)

OK

START(U), ...,START(T), ..., wy(X), ...

START(T), ...,START(U), ..., wy(X), ..., r:(X)

February 12, 2024 CSE 444 - Optimistic CC

» Scheduler receives a request, r{(X) or w(X)
» Should it allow it to proceed? Wait? Abort?
» Consider these cases:

wyulX) ... rr(X)

"U(X) WT(X) alf;mivé??

wulX) ... wy(X)

OK

START(U), ...,START(T), ..., wy(X), ...

Too late

START(T), ...,START(U), ..., wy(X), ..., r:(X)

February 12, 2024 CSE 444 - Optimistic CC

With each element X, associate

= RT(X) = the highest timestamp of any transaction U
that read X

= WT(X) = the highest timestamp of any transaction U
that wrote X

* C(X) = the commit bit: true when transaction with
highest timestamp that wrote X committed

February 12, 2024

With each element X, associate

= RT(X) = the highest timestamp of any transaction U
that read X

= WT(X) = the highest timestamp of any transaction U
that wrote X

* C(X) = the commit bit: true when transaction with
highest timestamp that wrote X committed

Waboﬂ, we must reset th@

February 12, 2024

For any r(X) or w(X) request, check for conflicts:
How do we check

m WU(X) o rT(X) if Read too late ?

"ry(X) ... w(X)

"W, (X) ... w(X)

Write too
late ?

February 12, 2024

For any r(X) or w(X) request, check for conflicts:
How do we check

m WU(X) o rT(X) if Read too late ?

"ry(X) ... w(X)

"W, (X) ... w(X)

Write too
late ?

When T requests r(X), need to check TS(U) < TS(T)

February 12, 2024

Read Too Late?

= T wants to read X

STAIE?T(T) ... START(U) ... wy(X) . . . r{(X)

February 12, 2024

Read Too Late?

= T wants to read X

STAIE?T(T) ... START(U) ... wy(X) . . . rTE(X)

If WT(X) > TS(T) then need to rollback T'!
T tried to read too late

February 12, 2024

Simplified TS-based Schedule (no Aborts)

Request is r(X)
27

February 12, 2024 CSE 444 - Optimistic CC

Simplified TS-based Schedule (no Aborts)

Request is r(X)
If WT(X)>TS(T) then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

February 12, 2024 CSE 444 - Optimistic CC 30

Write Too Late?

= T wants to write X

STAéT(T) ... START(U) ... ry(X) . . . WT=(X)

February 12, 2024

Write Too Late?

= T wants to write X

STAéT(T) ... START(U) ... ry(X) . . . WT=(X)

If RT(X) > TS(T) then need to rollback T'!
T tried to write too late

February 12, 2024

Simplified TS-based Schedule (no Aborts)

Request is r(X)
If WT(X)>TS(T) then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

Request is wr(X)
Yalals

February 12, 2024 CSE 444 - Optimistic CC 33

Simplified TS-based Schedule (no Aborts)

Request is r(X)
If WT(X)>TS(T) then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

Request is wr(X)
If RT(X) > TS(T) then ROLLBACK

what about WT(X)?
Otherwise, WRITE and update WT(X) =TS(T)

February 12, 2024 CSE 444 - Optimistic CC 34

Thomas’ Rule

But... we can still handle it in one case:
= T wants to write X

STAI%T(T) ... START(V) ... wy(X) . . . w{(X)

February 12, 2024

Thomas’ Rule

_ _ s this
But we can still handle it: conflict-

. serializable?
= T wants to write X

STAéT(T) ... START(V) ... wy(X) . . . WTE(X)

If RT(X) < TS(T) and WT(X) > TS(T)
then don’t write X at all |

February 12, 2024

Thomas’ Rule

_ _ s this
But we can still handle it: conflict-

. serializable?
= T wants to write X

STAéT(T) ... START(V) ... wy(X) . . . WTE(X)

If RT(X) = TS(T) and WT(X) > TS(T)

then don’t write X at all ! View
serializable!

February 12, 2024

Simplified TS-based Schedule (no Aborts)

Request is r(X)
If WT(X)>TS(T) then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

Request is wr(X)
If RT(X) > TS(T) then ROLLBACK
what about WT(X)?

Otherwise, WRITE and update WT(X) =TS(T)

February 12, 2024 CSE 444 - Optimistic CC 38

Simplified TS-based Schedule (no Aborts)

Request is r(X)
If WT(X)>TS(T) then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

Request is wr(X)
If RT(X) > TS(T) then ROLLBACK
tinue ' .

Else if WT(X) > TS(T) ignore write & con Vi
(Thomas Write Rule) VIEW=
Otherwise, WRITE and update WT(X) =TS(T) ', Serializable

February 12, 2024 CSE 444 - Optimistic CC 39

Simplified TS-based Schedule (no Aborts)

= The simplified timestamp-based scheduling with
Thomas’ rule ensures that the schedule is view-
serializable

February 12, 2024

Ensuring Recoverable Schedules

Recall:

» Schedule without cascading aborts:
when a transaction reads an element, then
transaction that wrote it must have already
committed

= Use the commit bit C(X) to keep track if the
transaction that last wrote X has committed
(just a read will not change the commit bit)

February 12, 2024

Ensuring Recoverable Schedules

Read dirty data:
» T wants to read X, and WT(X) < TS(T)
= Seems OK, but...

START(U) .. START(T) ... wy(X). . [r(X)).. ABOF%T(U)

If C(X)=false, T needs to wait for it to become true

February 12, 2024

Ensuring Recoverable Schedules

Thomas' rule needs to be revised:
= T wants to write X, and WT(X) > TS(T)
= Seems OK not to write at all, but ...

START(T) .. START(U)... wy(X). . . @(X). .. ABORT(U)

If C(X)=false, T needs to wait for it to become true

February 12, 2024

Timestamp-based Scheduling

= When a transaction T requests r{(X) or wy(X),
the scheduler examines RT(X), WT(X), C(X),
and decides one of:

- To grant the request, or
- To rollback T (and restart with later timestamp)
» To delay T until C(X) = true

February 12, 2024 CSE 444 - Optimistic CC

Timestamp-based Scheduling

RULES including commit bit
= There are 4 long rules in Sec. 18.8.4

= You should be able to derive them yourself,
based on the previous slides

= Make sure you understand them |

READING ASSIGNMENT:
Garcia-Molina et al. 18.8.4

February 12, 2024 CSE 444 - Optimistic CC

Timestamp-based Scheduling (sec. 18.8.4)

Transaction wants to READ element X
If WT(X) > TS(T) then ROLLBACK
Else If C(X) = false, then WAIT
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to WRITE element X
If RT(X) > TS(T) then ROLLBACK
Else if WT(X) > TS(T)
Then If C(X) = false then WAIT
else IGNORE write (Thomas Write Rule)
Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false

February 12, 2024

Basic Timestamps with Commit Bit

T‘I T2 T3 T4 A
1 2 3 4 RT=0
WT=0 C-=true

Time

February 12, 2024

Basic Timestamps with Commit Bit

T T, T, T, A
1 2 3 4 RT=0
WT=0 C-=true
W3 (A)

Time

February 12, 2024

Basic Timestamps with Commit Bit

T, T, T, T, A
1 2 3 4 RT=0
WT=0 C-=true
W, (A) WT=2 C-=false
Time RT=0

February 12, 2024

Basic Timestamps with Commit Bit

T‘I T2 T3 T4 A
1 2 3 4 RT=0
WT=0 C=true
W, (A) WT=2 C-=false
Time R;(A) RT=0

February 12, 2024

Basic Timestamps with Commit Bit

T, T, T, T, A
1 2 3 4 RT=0
WT=0 C=true
W, (A) WT=2 C-=false
Time R;(A) RT=0
Abort

February 12, 2024

Basic Timestamps with Commit Bit

T, T, T, T, A
1 2 3 4 RT=0
WT=0 C-=true
W, (A) WT=2 C-=false
Time Ri(A) RT=0
Abort Rs(A)

February 12, 2024

Basic Timestamps with Commit Bit

T, T, T, T, A
1 2 3 4 RT=0
WT=0 C=true
W, (A) WT=2 C-=false
Time Ri(A) RT=0
Abort R3(A)
Delay

February 12, 2024

Basic Timestamps with Commit Bit

T, T, T, T, A
1 2 3 4 RT=0
WT=0 C=true
W, (A) WT=2 C-=false
Time Ri(A) RT=0
Abort R3(A)
Delay
C

February 12, 2024

Basic Timestamps with Commit Bit

T‘I T2 T3 T4 A
1 2 3 4 RT=0
WT=0 C=true
W, (A) WT=2 C-=false
Time Ri(A) RT=0
Abort R3(A)
Delay
C C=true

February 12, 2024

Basic Timestamps with Commit Bit

Time

T, T, T, T, A
1 2 3 4 RT=0
WT=0 C-=true
W, (A) WT=2 C-=false
R, (A) RT=0
Abort Rs(A)
Delay
C C=true
R3(A)

February 12, 2024

Basic Timestamps with Commit Bit

Time

T‘I T2 T3 T4 A
1 2 3 4 RT=0
WT=0 C=true
W, (A) WT=2 C-=false
R, (A) RT=0
Abort R3(A)
Delay
C C=true
R5(A) RT=3

February 12, 2024

Basic Timestamps with Commit Bit

Time

T T, T, T, A
1 2 3 4 RT=0
WT=0 C-=true
W, (A) WT=2 C-=false
R (A) RT=0
Abort Ra(A)
Delay
C C=true
R5(A) RT=3
Wy(A)

February 12, 2024

Basic Timestamps with Commit Bit

Time

T T, T4 T, A
1 2 3 4 RT=0
WT=0 C=true
W, (A) WT=2 C-=false
R, (A) RT=0
Abort Ra(A)
Delay
C C=true
R5(A) RT=3
W,(A)| WT=4 C=false

February 12, 2024

Basic Timestamps with Commit Bit

Time

T T, T, T, A
1 2 3 4 RT=0
WT=0 C-=true
W, (A) WT=2 C-=false
R (A) RT=0
Abort Ra(A)
Delay
C C=true
R5(A) RT=3
W,(A)| WT=4 C=false
W3(A)

February 12, 2024

Basic Timestamps with Commit Bit

Time

T T, T3 T, A
1 2 3 4 RT=0
WT=0 C-=true
W, (A) WT=2 C-=false
R (A) RT=0
Abort Ra(A)
Delay
C C=true
R5(A) RT=3
W,(A)| WT=4 C=false
W3(A)
delay

February 12, 2024

Basic Timestamps with Commit Bit

Time

T T, T4 T, A
1 2 3 4 RT=0
WT=0 C=true
W, (A) WT=2 C-=false
R, (A) RT=0
Abort Rs(A)
Delay
C C=true
R5(A) RT=3
W,(A)| WT=4 C=false
W3(A)
delay
abort

February 12, 2024

Basic Timestamps with Commit Bit

Time

T T, T4 T, A
1 2 3 4 RT=0
WT=0 C=true
W, (A) WT=2 C-=false
R, (A) RT=0
Abort Rs(A)
Delay
C C=true
R5(A) RT=3
W,(A)| WT=4 C=false
W3(A)
delay
abort | WT=2 C=true

February 12, 2024

Basic Timestamps with Commit Bit

Time

T T, T4 T, A
1 2 3 4 RT=0
WT=0 C-=true
W, (A) WT=2 C-=false
R (A) RT=0
Abort Ra(A)
Delay
C C=true
R5(A) RT=3
W,(A)| WT=4 C=false
W3(A)
delay
abort | WT=2 C=true
W3(A)

February 12, 2024

Basic Timestamps with Commit Bit

Time

T T, T4 T, A
1 2 3 4 RT=0
WT=0 C=true
W, (A) WT=2 C-=false
R, (A) RT=0
Abort Ra(A)
Delay
C C=true
R5(A) RT=3
W,(A)| WT=4 C=false
W3(A)
delay
abort | WT=2 C=true
W3(A) WT=3 C-=false

February 12, 2024

Summary of Timestamp-based Scheduling

= \/lew-serializable

» Avoids cascading aborts (hence: recoverable)

*» Does NOT handle phantoms

* These need to be handled separately, e.g. predicate
locks

February 12, 2024

Multiversion Timestamp

* \When transaction T requests r(X)
but WT(X) > TS(T), then T must rollback

» |dea: keep multiple versions of X:
X, X1, Xio, -« -

TS(X) > TS(X4) > TS(Xip) > . ..

February 12, 2024

Example (in class)

X Xo Xip Xy

Rg(X) -- what happens?

February 12, 2024 CSE 444 - Optimistic CC 68

Example (in class)

X Xo Xip Xy

Rs(X) -- what happens”? Return X,

February 12, 2024 CSE 444 - Optimistic CC

Example (in class)

X Xo Xip Xy

Rs(X) -- what happens”? Return X,
W, ,(X) — what happens?

February 12, 2024 CSE 444 - Optimistic CC

Example (in class)

X Xg Xip Xq4 Xyg

Rs(X) -- what happens”? Return X,
W, ,(X) — what happens?

February 12, 2024 CSE 444 - Optimistic CC

Example (in class)

X Xg Xip Xq4 Xyg

Rs(X) -- what happens”? Return X,
W, ,(X) — what happens?
R,5(X) — what happens?

February 12, 2024 CSE 444 - Optimistic CC

Example (in class)

X Xg Xip Xq4 Xyg

Rs(X) -- what happens”? Return X,
W, ,(X) — what happens?
R45(X) — what happens? Return X,,

February 12, 2024 CSE 444 - Optimistic CC

Example (in class)

X Xg Xip Xq4 Xyg

Rs(X) -- what happens”? Return X,
W, ,(X) — what happens?
R,5(X) — what happens? Return X,,

W;:(X) — what happens?

February 12, 2024 CSE 444 - Optimistic CC

Example (in class)

X Xg Xip Xq4 Xyg

Rs(X) -- what happens”? Return X,
W, ,(X) — what happens?
R,5(X) — what happens? Return X,,

W;:(X) — what happens? ABORT

February 12, 2024 CSE 444 - Optimistic CC

Example (in class)

X Xg Xip Xq4 Xyg

Rs(X) -- what happens”? Return X,

W, ,(X) — what happens?
R,5(X) — what happens? Return X,,
W;:(X) — what happens? ABORT

When can we delete X;?

February 12, 2024 CSE 444 - Optimistic CC

Example (in class)

X Xg Xip Xq4 Xyg

Rs(X) -- what happens? Return X,
W, ,(X) — what happens?

R,5(X) — what happens? Return X,
W:(X) — what happens? ABORT

When can we delete X;? When min TS(T) > 9

(i.e. all active transactions are later than time 9)

February 12, 2024 CSE 444 - Optimistic CC

* When w+(X) occurs,
If the write is legal then
create a new version, denoted X; wheret=TS(T)

February 12, 2024

* When w+(X) occurs,
If the write is legal then
create a new version, denoted X; wheret=TS(T)

* When r{(X) occurs,
find most recent version X; such that t <= TS(T)

Notes:

« WT(X;) =tand it never changes for that version
« RT(X;) must still be maintained to check legality of writes

February 12, 2024

* When w+(X) occurs,
If the write is legal then
create a new version, denoted X; wheret=TS(T)

* When r{(X) occurs,
find most recent version X; such that t <= TS(T)

Notes:

« WT(X,) =tand it never changes for that version

« RT(X;) must still be maintained to check legality of writes
keep only the largest value

» Can delete X if we have a later version X;; and all active
transactions ‘i’ have TS(T) > t1

February 12, 2024

Example w/ Basic Timestamps

T‘I T2 T3 T4 A
Timestamps: 1 2 3 4 RT=0
WT=0
R,(A) RT=1
W, (A) WT=1
R;(A) RT=3
W;(A) WT=3
Ry (A)
Abort
R,(A) | RT=4

February 12, 2024

Example w/ Multiversion

T T, T3 Ty Ao
1 2 3 4
R,(A) RT=1

February 12, 2024

Example w/ Multiversion

T T, T3 Ty Ao

1 2 3 4

R,(A) RT=1
W, (A)

February 12, 2024

Example w/ Multiversion

T T, T3 Ty Ao A

1 2 3 4

R,(A) RT=1

W, (A) Create

February 12, 2024

Example w/ Multiversion

T T, T3 Ty Ao A

1 2 3 4

R,(A) RT=1

W, (A) Create
R3(A)

February 12, 2024

Example w/ Multiversion

T T, T3 Ty Ao A

1 2 3 4

R,(A) RT=1

W, (A) Create
R;(A) RT=3

February 12, 2024

Example w/ Multiversion

T, T, T; T, Ao A

1 2 3 4

R,(A) RT=1

W, (A) Create
R;(A) RT=3
W3(A)

February 12, 2024

Example w/ Multiversion

T T, T3 Ty Ao A As
1 2 3 4
R,(A) RT=1
W, (A) Create
R;(A) RT=3
W;(A) Create

February 12, 2024

Example w/ Multiversion

T, T, LE T, Ao A As
1 2 3 4
Ry (A) RT
W, (A) Create
R5(A) RT=3
W;(A) Create
R2(A)

February 12, 2024

Example w/ Multiversion

T, T, LE T, Ao A As
1 2 3 4
Ry (A) RT=1
W, (A) Create
R5(A) RT=3
W;(A) Create
R,(A) RT=2

February 12, 2024

Example w/ Multiversion

T, T, LE T, Ao A As
1 2 3 4
Keep only

R,(A) RT max RT
W, (A) Create

R4(A) RT=3

W;(A) Create

Ry (A) RPE2

February 12, 2024

Example w/ Multiversion

T T, T3 Ty Ag A1 As
1 2 3 4
Ry (A) RT
W, (A) Create
R5(A) RT=3
W;(A) Create
Ry(A) RPE2
W3 (A)

February 12, 2024

Example w/ Multiversion

T, T, T3 T4 Ao A As
1 2 3 4
Ry (A) RT -
W, (A) reate
| Ry(A)
W;(A) Create
Ry(A) RPE2
W, (A

February 12, 2024

abort

Example w/ Multiversion

T, T, LE T, Ao A As
1 2 3 4
Ry (A) RT
W, (A) Create
R5(A) RT=3
W;(A) Create
Ry(A) RPE2
Wy(A)
abort
R4(A)

February 12, 2024

Example w/ Multiversion

T, T, LE T, Ao A As
1 2 3 4
Ry (A) RT
W, (A) Create
R5(A) RT=3
W;(A) Create
R,(A) RPE2
Wy(A)
abort
R4(A) RT=4

February 12, 2024

Second Example w/ Multiversion

T T, T, T, Ts A, A, A, A, A, As
1 2 3 4 5
W, (A)

February 12, 2024

Second Example w/ Multiversion

Ty

T, T, T, Ts A, A A, As A, As
1 2 3 4 5
W,(A) Create
WI1(A Create
R,(A) RT=2
R5(A) RT=3
Wy (A)
abort R5(A) RT=5
W;5(A) Create
R,(A) RT=5
R,(A) RT=3
C X
C X

X means that we can delete this version

February 12, 2024

Multiversion Concurrency Control

» Does not solve cascading aborts and
recoverability, need to add Commit bit for those

= Does allow transactions to read in cases when
they would have to abort in simple time-stamp
based control

February 12, 2024 CSE 444 - Optimistic CC 98

= Concurrency control by timestamps (18.8)
= Concurrency control by validation (18.9)
= Snapshot Isolation

February 12, 2024 CSE 444 - Optimistic CC 99

Concurrency Control by Validation

» Each transaction T defines:
* Read set RS(T) = the elements it reads
* Write set WS(T) = the elements it writes

» Each transaction T has three phases:
* Read phase; time = START(T)
 Validate phase (may need to rollback); time = VAL(T)
» Write phase; time = FIN(T)

Main invariant: the serialization order is VAL(T)

February 12, 2024

Avoid r+(X) - wy(X) Conflicts

START(U) VAL(U) FIN(U)

U: | Read phase | Validate | Write phase

conflicts

T. | Read phase | Validate ?
f
START(T) VAL(T)
IF RS(T) N WS(U) and FIN(U) > START(T)
(U has validated and U has not finished before T begun)
Then ROLLBACK(T)

February 12, 2024

Avoid w(X) - w,(X) Conflicts

START(U) VAL(U) FIN(U)

l

U: | Read phase | Validate | Write phase
\conﬂicts
T. | Read phase | Validate | Write phase ?
f
START(T) VAL(T)

IF WS(T) N WS(U) and FIN(U) > VAL(T)

(U has validated and U has not finished before T validates)
Then ROLLBACK(T)

February 12, 2024

= Concurrency control by timestamps (18.8)
= Concurrency control by validation (18.9)

= Snapshot Isolation
* Not in the book, but good(2) overview in Wikipedia

February 12, 2024 CSE 444 - Optimistic CC 103

Snapshot Isolation

= A type of multiversion concurrency control algorithm

= Combines techniques we learned:
 Timestamps

« Multiversion
» Validation

= Very popular: Oracle, PostgreSQL, SQL Server 2005

= Prevents many classical anomalies BUT...
...not serializable (!)

= “Serializable snapshot isolation” now in PostgreSQL

February 12, 2024 CSE 444 - Optimistic CC 104

Snapshot Isolation Overview

= Each transactions receives a timestamp TS(T)
= Transaction T sees snapshot at time TS(T) of the database

= W/W conflicts resolved by “first committer wins” rule
* Loser gets aborted

= R/W conflicts are ignored

February 12, 2024

Snapshot Isolation Details

= Multiversion concurrency control:
* Versions of X: X, X, X3, - - -

= When T reads X, return X;g).

» \When T writes X (to avoid lost update):

* |f latest version of X is TS(T) then proceed
* Else if C(X) = true then abort
* Else if C(X) = false then wait

« When T commits, write its updates to disk

February 12, 2024

What Works and What Not

» Reads are ever delayed!

* No dirty reads (Why ?)
« Start each snapshot with consistent state

* No inconsistent reads (Why ?)

» Two reads by the same transaction will read same
snapshot

» No lost updates (“first committer wins”)

» However: read-write conflicts not caught!

* Atxn can read and commit even though the value had
changed in the middle

February 12, 2024

T1: T2:
READ(X); READ(Y);
if X>=150 if Y >= 50
then'Y = -50; WRITE(Y) then X = -50; WRITE(X)
COMMIT COMMIT

In our notation:

R1(X), Ro(Y), Wi(Y), Wy(X), C4,C,

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !!!

February 12, 2024 CSE 444 - Optimistic CC 108

Discussion: Tradeoffs

= Pessimistic CC: Locks
 Great when there are many conflicts
« Poor when there are few conflicts

= Optimistic CC: Timestamps, Validation, S
* Poor when there are many conflicts (rollbacks)
 Great when there are few conflicts

= Compromise
« READ ONLY transactions — timestamps
« READ/WRITE transactions — locks

February 12, 2024 CSE 444 - Optimistic CC 110

Commercial Systems

Always check documentation!
= DB2: Strict 2PL
= SQL Server:

e Strict 2PL for standard 4 levels of isolation

* Multiversion concurrency control for snapshot
isolation

= PostgreSQL: Sl; recently: seralizable SI (!)
= Oracle: Sl

February 12, 2024 m

