
1February 9, 2024

Database System Internals

CSE 444 - Locking

Concurrency Control - Locking

Scheduler

§The scheduler:
§Module that schedules the transaction’s actions,

ensuring serializability

§Two main approaches
• Pessimistic: locks
• Optimistic: timestamps, multi-version, validation

CSE 444 - Locking 4February 9, 2024

Pessimistic Scheduler

Simple idea:

§ Each element has a unique lock

§ Each transaction must first acquire the lock before
reading/writing that element

§ If the lock is taken by another transaction, then
wait

§ The transaction must release the lock(s)

February 9, 2024 CSE 444 - Locking 5

Notation

CSE 444 - Locking 6

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

February 9, 2024

A Non-Serializable Schedule

CSE 444 - Locking 7

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

February 9, 2024

Example

8

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

CSE 444 - Locking

Scheduler has ensured a conflict-serializable schedule

Example

15

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

CSE 444 - Winter 2019Scheduler has ensured a conflict-serializable schedule
February 9, 2024

February 9, 2024 CSE 444 - Locking 9

But…

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B);

Locks did not enforce conflict-serializability !!! What’s wrong ?

Two Phase Locking (2PL)

The 2PL rule:

§ In every transaction, all lock requests must
precede all unlock requests

§This ensures conflict serializability ! (will prove this
shortly)

February 9, 2024 CSE 444 - Locking 10

Example: 2PL transactions

11

T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B); Now it is conflict-serializable

February 9, 2024 CSE 444 - Locking

Example with Multiple Transactions

Equivalent to each transaction executing entirely
the moment it enters shrinking phase

CSE 444 - Locking 12

T1 T2 T3 T4

Growing
phase

Shrinking
phase

Unlocks first
Was not waiting
for anyone

Unlocks second so
perhaps was waiting
for T3

February 9, 2024

Two Phase Locking (2PL)

13

Theorem: 2PL ensures conflict serializability

CSE 444 - LockingFebruary 9, 2024

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability
Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

CSE 444 - Locking 14February 9, 2024

Two Phase Locking (2PL)

15

Theorem: 2PL ensures conflict serializability
Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:

February 9, 2024 CSE 444 - Locking

Two Phase Locking (2PL)

16

Theorem: 2PL ensures conflict serializability
Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) why?

February 9, 2024 CSE 444 - Locking

Two Phase Locking (2PL)

17

Theorem: 2PL ensures conflict serializability
Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

February 9, 2024 CSE 444 - Locking

Two Phase Locking (2PL)

18

Theorem: 2PL ensures conflict serializability
Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A) Contradiction

February 9, 2024 CSE 444 - Locking

February 9, 2024 CSE 444 - Locking 19

Problem: Non-recoverable Schedule

T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);
Commit

Abort

Strict 2PL

§ Strict 2PL: All locks held by a transaction are
released when the transaction is completed;
release happens at the time of COMMIT or
ROLLBACK

§ Schedule is recoverable
§ Schedule avoids cascading aborts

February 9, 2024 CSE 444 - Locking 20

February 9, 2024 CSE 444 - Locking 21

Strict 2PL

T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A);

L2(A); DENIED…
L1(B); READ(B)
B :=B+100
WRITE(B);
U1(A),U1(B); Rollback

…GRANTED; READ(A)
A := A*2
WRITE(A);
L2(B); READ(B)
B := B*2
WRITE(B);
U2(A); U2(B); Commit

Summary of Strict 2PL

Ensures:

§Serializability

§Recoverability

§Avoids cascading aborts

CSE 444 - Locking 22February 9, 2024

The Locking Scheduler

Task 1: -- act on behalf of the transaction
Add lock/unlock requests to transactions

§ Examine all READ(A) or WRITE(A) actions

§Add appropriate lock requests

§On COMMIT/ROLLBACK release all locks

§ Ensures Strict 2PL !

CSE 444 - Locking 23February 9, 2024

The Locking Scheduler
Task 2: -- act on behalf of the system
Execute the locks accordingly

§ Lock table: a big, critical data structure in a DBMS !

§ When a lock is requested, check the lock table
Grant, or add the transaction to the element’s wait list

§ When lock is released reactivate transaction from its wait list

§ When a transaction aborts, release all its locks

§ Check for deadlocks occasionally

CSE 444 - Locking 24February 9, 2024

Lock Modes

§S = shared lock (for READ)
§X = exclusive lock (for WRITE)

25

None S X
None OK OK OK
S OK OK Conflict
X OK Conflict Conflict

Lock compatibility matrix:

CSE 444 - LockingFebruary 9, 2024

Lock Granularity

§ Fine granularity locking (e.g., tuples)
• High concurrency
• High overhead in managing locks

§ Coarse grain locking (e.g., tables, predicate locks)
• Many false conflicts
• Less overhead in managing locks

CSE 444 - Locking 26February 9, 2024

Lock Performance

CSE 444 - Locking 27

Th
ro

ug
hp

ut

Active Transactions

thrashing

Why ?

February 9, 2024

2PL Deadlocks

February 9, 2024 Locks 28

T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
… … … …

2PL Deadlocks

February 9, 2024 Locks 29

T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
… … … …

Can’t make progress since locking
phase is not complete for any txn!

2PL Deadlocks

February 9, 2024 Locks 30

T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
… … … …

T1 T2 T3 T4

- Lock requests create a precedence/waits-for graph
where deadlock à cycle (2PL is doing its job!).
 - Cycle detection over a graph is somewhat expensive,
so we check the graph only periodically

2PL Deadlocks

February 9, 2024 Locks 31

T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
… … … …

If the DBMS finds a cycle:
 - We rollback txns
 - (Hopefully) make progress
 - Eventually retry the rolledback txns

2PL Deadlocks

February 9, 2024 Locks 32

T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…

2PL Deadlocks

February 9, 2024 Locks 33

T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
Abort, U(D)

2PL Deadlocks

February 9, 2024 Locks 34

T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
Abort, U(D)

L(D)

2PL Deadlocks

February 9, 2024 Locks 35

T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
Abort, U(D)

L(D)
(do operations)

2PL Deadlocks

February 9, 2024 Locks 36

T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
Abort, U(D)

L(D)
(do operations)
Commit, U(C),
U(D)

L(C)

Deadlocks

§ Cycle in the wait-for graph:
• T1 waits for T2
• T2 waits for T3
• T3 waits for T4
• T4 waits for T1

§ Deadlock detection
• Timeouts
• Wait-for graph

§ Deadlock avoidance
• Acquire locks in pre-defined order
• Acquire all locks at once before starting

CSE 444 - Locking 37February 9, 2024

Phantom Problem

§So far we have assumed the database to be a
static collection of elements (=tuples)

§ If tuples are inserted/deleted then the phantom
problem appears

CSE 444 - Locking 38February 9, 2024

CSE 444 - Locking 39

Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

February 9, 2024

CSE 444 - Locking 40

Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

No: T1 sees a “phantom” product A3

Suppose there are two blue products, A1, A2:

February 9, 2024

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

February 9, 2024 CSE 444 - Locking 41

W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

February 9, 2024 CSE 444 - Locking 42

W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’ But this is conflict-serializabel

Suppose there are two blue products, A1, A2:

February 9, 2024 CSE 444 - Locking 43

Phantom Problem

§A “phantom” is a tuple that is
invisible during part of a transaction execution
but not invisible during the entire execution

§ In our example:
• T1: reads list of products
• T2: inserts a new product
• T1: re-reads: a new product appears !

CSE 444 - Locking 44February 9, 2024

Dealing With Phantoms

§ Lock the entire table
§ Lock the index entry for ‘blue’

• If index is available
§Or use predicate locks

• A lock on an arbitrary predicate

CSE 444 - Locking 45

Dealing with phantoms is expensive !
February 9, 2024

Discussion

We always want a serializable schedule
Strict 2PL guarantees conflict serializability

§ In a static database:
• Conflict serializability implies serializability

§ In a dynamic database:
• Need both conflict serializability and handling of

phantoms to ensure serializability

February 9, 2024 CSE 444 - Locking 46

