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Database System Internals

CSE 444 - Locking

Concurrency Control - Locking



Scheduler

§The scheduler:
§Module that schedules the transaction’s actions, 

ensuring serializability

§Two main approaches
• Pessimistic: locks
• Optimistic: timestamps, multi-version, validation
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Pessimistic Scheduler

Simple idea:

§ Each element has a unique lock

§ Each transaction must first acquire the lock before 
reading/writing that element

§ If the lock is taken by another transaction, then 
wait

§ The transaction must release the lock(s)
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Notation
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Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A
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A Non-Serializable Schedule
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T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)
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Example
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T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A); 
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B); 

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B); 
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Scheduler has ensured a conflict-serializable schedule

Example
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T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A); 
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B); 

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B); 
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But…

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B); 

Locks did not enforce conflict-serializability !!! What’s wrong ?



Two Phase Locking (2PL)

The 2PL rule:

§ In every transaction, all lock requests must 
precede all unlock requests

§This ensures conflict serializability !  (will prove this 
shortly)
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Example: 2PL transactions
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T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A) 

L2(A); READ(A,s)
s := s*2
WRITE(A,s); 
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B); Now it is conflict-serializable
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Example with Multiple Transactions

Equivalent to each transaction executing entirely 
the moment it enters shrinking phase
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T1 T2 T3 T4

Growing
phase

Shrinking
phase

Unlocks first
Was not waiting
for anyone

Unlocks second so
perhaps was waiting
for T3
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Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability
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Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability
Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C
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Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability
Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
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Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability
Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)    why?
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Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability
Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) 
L2(A)àU2(B)      why?
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Two Phase Locking (2PL)
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Theorem: 2PL ensures conflict serializability
Proof.  Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

BA

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A) Contradiction
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Problem: Non-recoverable Schedule

T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A) 

L2(A); READ(A,s)
s := s*2
WRITE(A,s); 
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B); 

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B); 
Commit

Abort



Strict 2PL

§ Strict 2PL: All locks held by a transaction are 
released when the transaction is completed; 
release happens at the time of COMMIT or 
ROLLBACK

§ Schedule is recoverable
§ Schedule avoids cascading aborts
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Strict 2PL

T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A); 

L2(A); DENIED…
L1(B); READ(B)
B :=B+100
WRITE(B); 
U1(A),U1(B); Rollback

…GRANTED; READ(A)
A := A*2
WRITE(A); 
L2(B); READ(B)
B := B*2
WRITE(B);
U2(A); U2(B); Commit



Summary of Strict 2PL

Ensures:

§Serializability

§Recoverability

§Avoids cascading aborts
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The Locking Scheduler

Task 1: -- act on behalf of the transaction
Add lock/unlock requests to transactions

§ Examine all READ(A) or WRITE(A) actions

§Add appropriate lock requests

§On COMMIT/ROLLBACK release all locks

§ Ensures Strict 2PL !
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The Locking Scheduler
Task 2: -- act on behalf of the system
Execute the locks accordingly

§ Lock table: a big, critical data structure in a DBMS !

§ When a lock is requested, check the lock table
Grant, or add the transaction to the element’s wait list

§ When lock is released reactivate transaction from its wait list

§ When a transaction aborts, release all its locks

§ Check for deadlocks occasionally
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Lock Modes

§S = shared lock (for READ)
§X = exclusive lock (for WRITE)

25

None S X
None OK OK OK
S OK OK Conflict
X OK Conflict Conflict

Lock compatibility matrix:
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Lock Granularity

§ Fine granularity locking (e.g., tuples)
• High concurrency
• High overhead in managing locks

§ Coarse grain locking (e.g., tables, predicate locks)
• Many false conflicts
• Less overhead in managing locks

CSE 444 - Locking 26February 9, 2024



Lock Performance
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2PL Deadlocks
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T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
… … … …



2PL Deadlocks
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T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
… … … …

Can’t make progress since locking 
phase is not complete for any txn!



2PL Deadlocks
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T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
… … … …

T1 T2 T3 T4

- Lock requests create a precedence/waits-for graph 
where deadlock à cycle (2PL is doing its job!).
 - Cycle detection over a graph is somewhat expensive, 
so we check the graph only periodically



2PL Deadlocks
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T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
… … … …

If the DBMS finds a cycle:
 - We rollback txns
 - (Hopefully) make progress 
 - Eventually retry the rolledback txns



2PL Deadlocks
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T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…



2PL Deadlocks

February 9, 2024 Locks 33

T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
Abort, U(D)



2PL Deadlocks
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T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
Abort, U(D)

L(D) 



2PL Deadlocks
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T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
Abort, U(D)

L(D) 
(do operations)



2PL Deadlocks
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T1 (A, B) T2 (B, C) T3 (C, D) T4 (D, A)
L(A) L(B) L(C) L(D)
L(B) blocked…

L(C) blocked…
L(D) blocked…

L(A) blocked…
Abort, U(D)

L(D) 
(do operations)
Commit, U(C), 
U(D)

L(C)



Deadlocks

§ Cycle in the wait-for graph:
• T1 waits for T2
• T2 waits for T3
• T3 waits for T4
• T4 waits for T1

§ Deadlock detection
• Timeouts
• Wait-for graph

§ Deadlock avoidance
• Acquire locks in pre-defined order
• Acquire all locks at once before starting
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Phantom Problem

§So far we have assumed the database to be a 
static collection of elements (=tuples)

§ If tuples are inserted/deleted then the phantom 
problem appears
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Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:
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Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

No: T1 sees a “phantom” product A3

Suppose there are two blue products, A1, A2:
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Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:
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W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:
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W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’ But this is conflict-serializabel

Suppose there are two blue products, A1, A2:
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Phantom Problem

§A “phantom” is a tuple that is 
invisible during part of a transaction execution 
but not invisible during the entire execution

§ In our example:
• T1: reads list of products
• T2: inserts a new product
• T1: re-reads: a new product appears !
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Dealing With Phantoms

§ Lock the entire table
§ Lock the index entry for ‘blue’

• If index is available
§Or use predicate locks 

• A lock on an arbitrary predicate
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Dealing with phantoms is expensive !
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Discussion

We always want a serializable schedule
Strict 2PL guarantees conflict serializability

§ In a static database:
• Conflict serializability implies serializability

§ In a dynamic database:
• Need both conflict serializability and handling of 

phantoms to ensure serializability
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