o

Shuffle S,S;, S on (0

ssssioald
Numberofsession
oate
511 [expermentio
=
1 S—
e 71'4!"'-4
. [—— .-r —
e fuo e 4 J4RXER
71 [sessionid i ']
NumberOfTral Resslurion 12
#ea [setup fite ‘.n
#K3 | subjecti SetupCondtion | B Gonn\ A7, | | \eAmdd / /| Matioy | =
etupharker (| AU
Recordedovietic S\ SR S7NOS /L i a1 A
! N {5 -
“""T 3 : EHII . (a) Traditional parallel query plan
TRUe Timecowse Tl _Tajecton o l)—.". g
e
[S ~!_
P9 o C—
P P [e
FX2 | TimecoursetD FK2 | TrajectorylD v
' (
Timecourse Trectory
7% [Timecouneo | Teiectored phe=sszsiln
Frequency Frequency o
Segmentio seqmentd ey
Kndofoats Kindotoat
NErames Markerld Lo
) P NFrames £Cube shuffle-based parallel g
) Dt

Database System Internals

Concurrency Control - Locking

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

February 9, 2024 CSE 444 - Locking

Scheduler

= The scheduler:

= Module that schedules the transaction’s actions,
ensuring serializability

* Two main approaches

* Pessimistic: locks
« Optimistic: timestamps, multi-version, validation

February 9, 2024

Pessimistic Scheduler

Simple idea:
= Each element has a unique lock

= Each transaction must first acquire the lock before
reading/writing that element

= |f the lock is taken by another transaction, then
wait

= The transaction must release the lock(s)

February 9, 2024

L.(A) = transaction T, acquires lock for element A

U.(A) = transaction T; releases lock for element A

February 9, 2024

A Non-Serializable Schedule

T1 T2

READ(A, t)

t:=t+100

WRITE(A, 1)
READ(A,s)
S = 8%2
WRITE(A,s)
READ(B,s)
S = 8%2
WRITE(B,s)

READ(B, t)

t:=t+100

WRITE(B,1)

February 9, 2024

Example
T1 12

L,(A); READ(A, t)

t:=t+100

WRITE(A, t); U,(A); L{(B)
L,(A); READ(A,s)
S = §%2
WRITE(A,s); U,(A);
L,(B); DENIED...

READ(B, t)

t:=t+100

WRITE(B,t); U,(B);
...GRANTED; READ(B,s)
S = §%2
WRITE(B,s); U,(B);

‘ Scheduler has ensured a conflict-serializable schedule

15

T1 12

L,(A); READ(A, t)

t:=t+100

WRITE(A, t); U,(A);
L,(A); READ(A,s)
S :=8%2
WRITE(A,s); Uy(A);
L,(B); READ(B,s)
S = 8%2
WRITE(B,s); U,(B);

L,(B); READ(B, 1)

t:=t+100

WRITE(B,t); U,(B);

Locks did not enforce conflict-serializability !'! What's wrong ?

February 9, 2024

Two Phase Locking (2PL)

The 2PL rule:

= In every transaction, all lock requests must
precede all unlock requests

» This ensures conflict serializability ! (will prove this
shortly)

February 9, 2024

Example: 2PL transactions

T1

12

C,(A): L,(B); READ(A, 1)
t := t+100
WRITE(A, t); U,(A)

READ(B, t)
t:=1t+100
WRITE(B,t); U,(B);

Now it is conflict-serializable

February 9, 2024 CSE 444 - Locking

L,(A); READ(A,s)
S = 8%2
WRITE(A,s);
L,(B); DENIED...

...GRANTED; READ(B,s)
S :=8%2
WRITE(B,s); U,(A); U,(B);

Example with Multiple Transactions

Growing
phase

Shrinking |

phase

Equivalent to each transaction executing entirely

T1

12

Unlocks second so

for T3

perhaps was waiting

T3

Unlocks first
Was not waiting
—for anyone

the moment it enters shrinking phase

February 9, 2024

CSE 444 - Locking

T4

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability I

February 9, 2024

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability I

Proof. Suppose not: then
there exists a cycle
In the precedence graph.

C

T1
A B

February 9, 2024

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability I

Proof. Suppose not: then || Then there is the

there exists a cycle following temporal
In the precedence graph. ||cycle in the schedule:
C
T1

February 9, 2024 CSE 444 - Locking

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability I

Proof. Suppose not: then
there exists a cycle

In the precedence graph.

C
T1

Then there is the

following temporal
cycle in the schedule:

U.(A)>L,(A) why?

February 9, 2024 CSE 444 - Locking

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability I

Proof. Suppose not: then
there exists a cycle
In the precedence graph.

C
T1

Then there is the

following temporal
cycle in the schedule:
U,(A)=2L,(A)
L,(A)2>U,(B) why?

February 9, 2024 CSE 444 - Locking

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability I

Proof. Suppose not: then
there exists a cycle

In the precedence graph.

C
T1

February 9, 2024 CSE 444 - Locking

Then there is the

following temporal
cycle in the schedule:
U 1(A)2L2(A)
L2(A)=>Ux(B)
U,(B)9L3)

(B
(B
L3(B)=>U;(C)
Us(C)=2>L4(C)
L,(C)=>U, (A

) Contradiction

Problem: Non-recoverable Schedule

T1 T2
L1(A); L4+(B); READ(A,)

t:= t+100

WRITE(A, t): U,(A)

L,(A): READ(A,s)

S :=8%2
WRITE(A,s);
L,(B); DENIED...
READ(B, t)
t:=t+100

WRITE(B,t); U,(B);
...GRANTED; READ(B,s)
S :=8*2
WRITE(B,s); U,(A); U,(B);
Commit

Abort

February 9, 2024

Strict 2PL

= Strict 2PL: All locks held by a transaction are
released when the transaction is completed;

release happens at the time of COMMIT or
ROLLBACK

= Schedule is recoverable
= Schedule avoids cascading aborts

February 9, 2024

Strict 2PL

T1 T2
[,(A), READ(A)

A :=A+100

WRITE(A);

L,(A); DENIED. ..
L,(B); READ(B)

B :=B+100

WRITE(B);

U,(A),Us(B): Rollback

...GRANTED; READ(A)
A :=A*2

WRITE(A);

L,(B); READ(B)
B:=B*2

WRITE(B);

Uo(A); Uy(B); Commit
February 9, 2024

Summary of Strict 2PL

Ensures:
=Serializability
=Recoverability

= Avoids cascading aborts

February 9, 2024

The Locking Scheduler

Task 1: - act on behalf of the transaction
Add lock/unlock requests to transactions

= Examine all READ(A) or WRITE(A) actions

= Add appropriate lock requests

= On COMMIT/ROLLBACK release all locks

» Ensures Strict 2PL |

February 9, 2024

The Locking Scheduler

Task 2: - act on behalf of the system
Execute the locks accordingly

= Lock table: a big, critical data structure in a DBMS |

* When a lock is requested, check the lock table
Grant, or add the transaction to the element’s wait list

» When lock is released reactivate transaction from its wait list
* When a transaction aborts, release all its locks

= Check for deadlocks occasionally

February 9, 2024

Lock Modes

* S = shared lock (for READ)
= X = exclusive lock (for WRITE)

Lock compatibility matrix:

None S X
None OK OK OK
S OK OK Conflict
X OK Conflict Conflict

February 9, 2024

Lock Granularity

= Fine granularity locking (e.g., tuples)
» High concurrency
* High overhead in managing locks

= Coarse grain locking (e.g., tables, predicate locks)

« Many false conflicts
» Less overhead in managing locks

February 9, 2024

Lock Performance

=
Q.
L
(@)
S
= ning
|_
Why ?

Active Transactions

February 9, 2024

2PL Deadlocks

TVAB) T2 B O TG D) T DA

L(A) L(B) L(C) L(D)
L(B) blocked...
L(C) blocked...
L(D) blocked...
L(A) blocked...

February 9, 2024 Locks 28

2PL Deadlocks

T1(A B T2(BC) ____T3(CD) ____T4(D,A)

L(A) L(B) L(C) L(D)
L(B) blocked...
L(C) blocked...
L(D) blocked...
L(A) blocked...

Can’t make progress since locking
phase is not complete for any txn!

February 9, 2024 29

2PL Deadlocks

TR B) T2 (B0 TG D) 1A DA

L(A) L(B) L(C) L(D)
L(B) blocked...
L(C) blocked...
L(D) blocked...
L(A) blocked...

- Lock requests create a precedence/waits-for graph
where deadlock = cycle (2PL is doing its job!).

- Cycle detection over a graph is somewhat expensive,
so we check the graph only periodically

February 9, 2024 Locks 30

2PL Deadlocks

T1(A B T2(BC) ____T3(CD) ____T4(D,A)

L(A) L(B) L(C) L(D)
L(B) blocked...

L(C) blocked...
L(D) blocked...
L(A) blocked...

If the DBMS finds a cycle:

- We rollback txns

- (Hopefully) make progress

- Eventually retry the rolledback txns

February 9, 2024 Locks 31

2PL Deadlocks

TV(AB) T2 0 TG D) TR DA

L(A) L(B) L(C) L(D)
L(B) blocked...
L(C) blocked...
L(D) blocked...
L(A) blocked...

February 9, 2024 Locks 32

2PL Deadlocks

TV(AB) T2 0 TG D) TR DA

L(A) L(B) L(C) L(D)
L(B) blocked...
L(C) blocked...
L(D) blocked...
L(A) blocked...
Abort, U(D)

February 9, 2024 Locks 33

2PL Deadlocks

TV(AB) T2 0 TG D) TR DA

L(A) L(B) L(C) L(D)
L(B) blocked...
L(C) blocked...
L(D) blocked...
L(A) blocked...
Abort, U(D)
L(D)

February 9, 2024 Locks 34

2PL Deadlocks

TV(AB) T2 0 TG D) TR DA

L(A) L(B) L(C) L(D)
L(B) blocked...
L(C) blocked...
L(D) blocked...
L(A) blocked...
Abort, U(D)
L(D)

(do operations)

February 9, 2024 Locks 35

2PL Deadlocks

TV(AB) T2 0 TG D) TR DA

L(A) L(B) L(C) L(D)
L(B) blocked...
L(C) blocked...
L(D) blocked...
L(A) blocked...
Abort, U(D)
L(D)
(do operations)

Commit, U(C),
U(D)

L(C)

February 9, 2024 Locks 36

Deadlocks

= Cycle in the wait-for graph:
* T1 waits for T2
» T2 waits for T3
e T3 waits for T4
e T4 waits for T1

» Deadlock detection
* Timeouts
* Waitfor graph

» Deadlock avoidance

* Acquire locks in pre-defined order
* Acquire all locks at once before starting

February 9, 2024

Phantom Problem

= So far we have assumed the database to be a
static collection of elements (=tuples)

= |f tuples are inserted/deleted then the phantom
problem appears

February 9, 2024

Phantom Problem

Suppose there are two blue products, A1, A2:

T1 12

SELECT *
FROM Product
WHERE color='blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color='blue’

Is this schedule serializable 2

February 9, 2024

Phantom Problem

Suppose there are two blue products, A1, A2:

T1 12

SELECT *
FROM Product
WHERE color='blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color='blue’

Is this schedule serializable 2

No: T1 sees a “phantom” product A3

Phantom Problem

Suppose there are two blue products, A1, A2:

T1 12

SELECT *
FROM Product
WHERE color='blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color='blue’

R1(A1);R4(A2);W,(A3);R(A1);R{(A2);R4(A3)

February 9, 2024 CSE 444 - Locking 41

Phantom Problem

Suppose there are two blue products, A1, A2:

T1 T2

SELECT *
FROM Product
WHERE color='blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color='blue’

R1(A1);R4(A2);W,(A3);R(A1);R{(A2);R4(A3)

| V 2(A3);R1(A1);R1(A2)§_R1(A1);R1(A2);R(A3)

Phantom Problem

Suppose there are two blue products, A1, A2:

T1 T2

SELECT *
FROM Product
WHERE color='blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color="blue’ But this is conflict-serializabel

R1(A1);R4(A2);W,(A3);R(A1);R{(A2);R4(A3)

| V 2(A3);R1(A1);R1(A2)§_R1(A1);R1(A2);R(A3)

Phantom Problem

= A “phantom” is a tuple that is
invisible durin? part of a transaction execution
but not invisible during the entire execution

= In our example:

* T1: reads list of products
* T2: inserts a new product
* T1: re-reads: a new product appears |

February 9, 2024

Dealing With Phantoms

= Lock the entire table

= Lock the index entry for ‘blue’
* If index is available

= Or use predicate locks
* A lock on an arbitrary predicate

Dealing with phantoms is expensive |

February 9, 2024

Discussion

We always want a serializable schedule

Strict 2PL guarantees conflict serializability

= In a static database:
» Conflict serializability implies serializability

= In a dynamic database:

* Need both conflict serializability and handling of
phantoms to ensure serializability

February 9, 2024

