
1February 5, 2024

Database System Internals

CSE 444 – Query Optimization 3

Query Optimization (part 3)

Announcements

§ Lab 3 Released
• Transactions scheduler
• Part 1 due Feb 12th

• Part 2 due Feb 21st

CSE 444 – Query Optimization 3 2February 5, 2024

Selinger Optimizer History

§ 1960’s: first database systems
• Use tree and graph data models

§ 1970: Ted Codd proposes relational model
• E.F. Codd. A relational model of data for large shared data banks.

Communications of the ACM, 1970

§ 1974: System R from IBM Research
• One of first systems to implement relational model

§ 1979: Seminal query optimizer paper by P. Selinger et. al.
• Invented cost-based query optimization
• Dynamic programming algorithm for join order computation

CSE 444 – Query Optimization 3 3February 5, 2024

References

§ P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T.
Price. Access Path Selection in a Relational Database
Management System. Proceedings of ACM SIGMOD,
1979. Pages 22-34.

CSE 444 – Query Optimization 3 4February 5, 2024

Selinger Algorithm

Selinger enumeration algorithm considers
§ Different logical and physical plans at the same time

§ Cost of a plan is IO + CPU

§ Concept of interesting order during plan enumeration
• A sorted order as that requested by ORDER BY or GROUP GY
• Or order on attributes that appear in equi-join predicates

• Because they may enable cheaper sort-merge joins later

CSE 444 – Query Optimization 3 5February 5, 2024

Interesting Orders

§ Some query plans produce data in sorted order
• E.g scan over a primary index, merge-join
• Called interesting order

§ Next operator may use this order
• E.g. can be another merge-join

§ For each subset of relations, compute multiple optimal
plans, one for each interesting order

§ Increases complexity by factor k+1, where k=number of
interesting orders

CSE 444 – Query Optimization 3 6February 5, 2024

More about the Selinger Algorithm

§ Step 1: Enumerate all access paths for a single relation
• File scan or index scan
• Keep the cheapest for each interesting order

§ Step 2: Consider all ways to join two relations
• Use result from step 1 as the outer relation
• Consider every other possible relation as inner relation
• Estimate cost when using sort-merge or nested-loop join
• Keep the cheapest for each interesting order

§ Steps 3 and later: Repeat for three relations, etc.

CSE 444 – Query Optimization 3 7February 5, 2024

Example From Selinger Paper

CSE 444 – Query Optimization 3 8February 5, 2024

Step1: Access Path Selection for Single Relations

9

SELECT NAME, TITLE, SAL, DNAME
FROM EMP, DEPT, JOB
WHERE TITLE=‘CLERK’ AND LOC=‘DENVER’ AND EMP.DNO=DEPT.DNO AND EMP.JOB=JOB.JOB

CHEAPEST

CHEAPEST

CHEAPEST

February 5, 2024 CSE 444 – Query Optimization 3

Step1: Resulting Plan Search Tree for Single Relations

10

SELECT NAME, TITLE, SAL, DNAME
FROM EMP, DEPT, JOB
WHERE TITLE=‘CLERK’ AND LOC=‘DENVER’ AND EMP.DNO=DEPT.DNO AND EMP.JOB=JOB.JOB

Cost estimate for scanning Interesting order

February 5, 2024 CSE 444 – Query Optimization 3

Step2: Pairs of Relations (nested loop joins)

11

SELECT NAME, TITLE, SAL, DNAME
FROM EMP, DEPT, JOB
WHERE TITLE=‘CLERK’ AND LOC=‘DENVER’ AND EMP.DNO=DEPT.DNO AND EMP.JOB=JOB.JOB

From
step 1

Add as inner
nested loop

February 5, 2024 CSE 444 – Query Optimization 3

Step2: Pairs of Relations (sort-merge joins)

12February 5, 2024 CSE 444 – Query Optimization 3

Step3:Add Third Relation (sort-merge join)

13

Cheapest plan
with that order

Cheapest plan
with other order

February 5, 2024 CSE 444 – Query Optimization 3

Selinger Optimizer

Problem:
§ How to order a series of joins over N tables A,B,C,…

E.g. A.a = B.b AND A.c = D.d AND B.e = C.f

§ N! ways to order joins; e.g. ABCD, ACBD, ….

§ plans/ordering; e.g.
(((AB)C)D),((AB)(CD)))

§ Multiple implementations (hash, nested loops)

§ Naïve approach does not scale
• E.g. N = 20, #join orders 20! = 2.4 x 1018 ; many more plans

14CSE 444 – Query Optimization 3February 5, 2024

Selinger Optimizer

§ Only left-deep plans: (((AB)C)D) – eliminate CN-1.
• In SimpleDB, we consider all linear plans, not only left-deep.

§ Push down selections

§ Don’t consider cartesian products

§ Dynamic programming algorithm

15CSE 444 – Query Optimization 3February 5, 2024

Why Left-Deep

§ Advantages of left-deep trees?
1. Fits well with standard join algorithms (nested loop, one-pass),

more efficient

2. One pass join: Uses smaller memory
1. ((R, S), T), can reuse the space for R while joining (R, S) with T
2. (R, (S, T)): Need to hold R, compute (S, T), then join with R,

worse if more relations

3. Nested loop join, consider top-down iterator next()
1. ((R, S), T), Reads the chunks of (R, S) once, reads stored base

relation T multiple times
2. (R, (S, T)): Reads the chunks of R once, reads computed relation

(S, T) multiple times, either more time or more space

16CSE 444 – Query Optimization 3February 5, 2024

Next Example Acks

Implement variant of Selinger optimizer in SimpleDB

Designed to help you understand how this would
work in SimpleDB (not the homework)

Many following slides from Sam Madden at MIT

CSE 444 – Query Optimization 3 17February 5, 2024

SimpleDBs Optimizer

Exists within JoinOptimizer.java

In all the beginning labs, there is no
optimization!
The relevant parts of JoinOptimizer are empty

One major difference in SimpleDB compared
to Selinger optimizer:
We consider linear trees, not left-deep only

CSE 444 – Query Optimization 3 18February 5, 2024

R3

R1

R2

R4

R5

Dynamic Programming

OrderJoins(…):
R = set of relations to join
For d = 1 to N: /* where N = |R| */

For S in {all size-d subsets of R}:
optjoin(S) = (S – a) join a,

where a is the single relation that minimizes:
cost(optjoin(S – a)) +
min.cost to join (S – a) with a +
min.access cost for a

Note: optjoin(S-a) is cached from previous iterations

SimpleDB Lab5:
you implement orderJoins

CSE 444 – Query Optimization 3 19

Use:
computeCostAndCardOfSubplan

Use: enumerateSubsets

February 5, 2024

Example

§ orderJoins(A, B, C, D)
§ Assume all joins are Nested

Loop

20

Subplan S optJoin(S) Cost(OptJoin(S))

A

CSE 444 – Query Optimization 3February 5, 2024

Example

§ orderJoins(A, B, C, D)
§ Assume all joins are NL

§ d = 1
• A = best way to access A

(sequential scan, predicate-
pushdown on index, etc)

• B = best way to access B
• C = best way to access C
• D = best way to access D

21

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100
B Seq. scan 50
C Seq scan 120
D B+tree

scan
400

CSE 444 – Query Optimization 3February 5, 2024

Example

§ orderJoins(A, B, C, D)

§ d = 2
• {A,B} = AB or BA

use previously computed
best way to access A and B

22

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100
B Seq. scan 50
…

CSE 444 – Query Optimization 3February 5, 2024

Example

§ orderJoins(A, B, C, D)

§ d = 2
• {A,B} = AB or BA

use previously computed
best way to access A and B

23

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100
B Seq. scan 50
…
{A, B} BA 156

CSE 444 – Query Optimization 3February 5, 2024

Example

§ orderJoins(A, B, C, D)

§ d = 2
• {A,B} = AB or BA

use previously computed
best way to access A and B

• {B,C} = BC or CB

24

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100
B Seq. scan 50
…
{A, B} BA 156
{B, C} BC 98

CSE 444 – Query Optimization 3February 5, 2024

Example

§ orderJoins(A, B, C, D)

§ d = 2
• {A,B} = AB or BA

use previously computed
best way to access A and B

• {B,C} = BC or CB

25

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100
B Seq. scan 50
…
{A, B} BA 156
{B, C} BC 98

CSE 444 – Query Optimization 3February 5, 2024

Example

§ orderJoins(A, B, C, D)

§ d = 2
• {A,B} = AB or BA

use previously computed
best way to access A and B

• {B,C} = BC or CB
• {C,D} = CD or DC
• {A,C} = AC or CA
• {B,D} = BD or DB
• {A,D} = AD or DA

26

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100
B Seq. scan 50
…
{A, B} BA 156
{B, C} BC 98
……..

CSE 444 – Query Optimization 3February 5, 2024

Example

§ orderJoins(A, B, C, D)

§ d = 2
• {A,B} = AB or BA

use previously computed
best way to access A and B

• {B,C} = BC or CB
• {C,D} = CD or DC
• {A,C} = AC or CA
• {B,D} = BD or DB
• {A,D} = AD or DA

§ Total number of steps: choose(N, 2) × 2

27

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100
B Seq. scan 50
…
{A, B} BA 156
{B, C} BC 98
……..

CSE 444 – Query Optimization 3February 5, 2024

Example
§ orderJoins(A, B, C, D)

§ d = 3

• {A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A

28CSE 444 – Query Optimization 3February 5, 2024

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100
B Seq. scan 50
….
{A, B} BA 156
{B, C} BC 98
….
{A, B, C} BAC 500
……..

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100
B Seq. scan 50
….
{A, B} BA 156
{B, C} BC 98
….
{A, B, C} BAC 500
……..

optJoin(B,C)
and its cost are
already cached
in table

Example
§ orderJoins(A, B, C, D)

§ d = 3

• {A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A

29CSE 444 – Query Optimization 3February 5, 2024

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100
B Seq. scan 50
….
{A, B} BA 156
{B, C} BC 98
….
{A, B, C} BAC 500
……..

optJoin(B,C)
and its cost are
already cached
in table

Example
§ orderJoins(A, B, C, D)

§ d = 3

• {A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A,C}) to ({A,C})B
Remove C: compare C({A,B}) to ({A,B})C

30CSE 444 – Query Optimization 3February 5, 2024

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100
B Seq. scan 50
….
{A, B} BA 156
{B, C} BC 98
….
{A, B, C} BAC 500
……..

optJoin(B,C)
and its cost are
already cached
in table

Example
§ orderJoins(A, B, C, D)

§ d = 3

• {A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A,C}) to ({A,C})B
Remove C: compare C({A,B}) to ({A,B})C

31CSE 444 – Query Optimization 3February 5, 2024

Example

§ orderJoins(A, B, C, D)

§ d = 3

• {A,B,C} =
Remove A: compare A({B,C}) to ({B,C})A
Remove B: compare B({A,C}) to ({A,C})B
Remove C: compare C({A,B}) to ({A,B})C

• {A,B,D} =
Remove A: compare A({B,D}) to ({B,D})A
…

• {A,C,D} =…
• {B,C,D} =…

32

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100
B Seq. scan 50
….
{A, B} BA 156
{B, C} BC 98
….
{A, B, C} BAC 500
……..

optJoin(B,C)
and its cost are
already cached
in table

February 5, 2024 CSE 444 – Query Optimization 3

Example
§ orderJoins(A, B, C, D)

§ d = 4
• {A,B,C,D} =

Remove A: compare A({B,C,D}) to ({B,C,D})A
Remove B: compare B({A,C,D}) to ({A,C,D})B
Remove C: compare C({A,B,D}) to ({A,B,D})C
Remove D: compare D({A,B,C}) to ({A,B,C})D

33

Subplan S optJoin(S) Cost(OptJoin(S))

A Index
scan

100

B Seq. scan 50
{A, B} BA 156
{B, C} BC 98
{A, B, C} BAC 500
{B, C, D} DBC 150
……..

optJoin(B, C, D)
and its cost are
already cached
in table

February 5, 2024 CSE 444 – Query Optimization 3

Interesting Orders

§ Some query plans produce data in sorted order
• E.g scan over a primary index, merge-join
• Called interesting order

§ Next operator may use this order
• E.g. can be another merge-join

§ For each subset of relations, compute multiple optimal
plans, one for each interesting order

§ Increases complexity by factor k+1, where k=number of
interesting orders

CSE 444 – Query Optimization 3 51February 5, 2024

Why Left-Deep

Asymmetric, cost depends on the order
§ Left: Outer relation Right: Inner relation

§For nested-loop-join, we try to load the outer
(typically smaller) relation in memory, then read
the inner relation one page at a time

B(R) + B(R)*B(S) or B(R) + B(R)/M * B(S)

§For index-join,
we assume right (inner) relation has index

52CSE 444 – Query Optimization 3February 5, 2024

1. JoinOptimizer.java (and the classes used there)

2. Returns vector of “LogicalJoinNode”
Two base tables, two join attributes, predicate
e.g. R(a, b), S(c, d), T(a, f), U(p, q)
(R, S, R.a, S.c, =)
Recall that SimpleDB keeps all attributes of
R, S after their join R.a, R.b, S.c, S.d

3. Output vector looks like:
<(R, S, R.a, S.c), (R, T, R.b, T.f), (S, U, S.d, U.q)>

Implementation in SimpleDB (lab5)

53

R S

T

U

R.a = S.c

R.b = T.f

S.d = U.q

CSE 444 – Query Optimization 3February 5, 2024

Any advantage of returning pairs?
§ Flexibility to consider all linear plans

<(R, S, R.a,S.c), (R, T, R.b, T.f), (U, S, U.q, S.d)>

More Details:
1. You mainly need to implement “orderJoins(..)”
2. “CostCard” data structure stores a plan, its cost

and cardinality: you would need to estimate them
3. “PlanCache” stores the table in dyn. Prog:

Maps a set of LJN to
a vector of LJN (best plan for the vector),
its cost, and its cardinality
LJN = LogicalJoinNode

Implementation in SimpleDB (lab5)

54

R S

T

U

R.a = S.c

R.b = T.f

S.d = U.q

CSE 444 – Query Optimization 3February 5, 2024

