Shuffle S,S;, S on (0

T N
[NN

N
[
]

NN

]

NI
[N{]
INSE:

Trial_has_Timecourse Trial_has_Trajectory } ¢ ‘
~ > X P 0 G 7
Y AR IR e — —
P 1 |Tiain 7 s . . W) ¥ el .'a.
#xz | Timecoursetn 2 | Trajectoryo " kv e ol :
v v ! ? Nt o
oras, < o
Timecourse. Trajectory = c 01/
alto P
4 Myrosia Gregor in

Menyn
yn

tCube shuffle-based parallel g

Database System Internals

Query Execution and Algorithms

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

January 22, 2024 CSE 444 - Query Execution

Announcements

= Lab 2 released, part 1 due Friday, 1/26

* Implementing Operator Algorithms

* Select, Project, Join, Group By, Aggregate, Insert, Delete,
oh my!

« We'll talk about joins in class since there are many

options (but you can choose the simplest for your
implementation

* Make sure to start early!

January 22, 2024 CSE 444 - Query Execution 2

What We Have Learned So Far

» Overview of the architecture of a DBMS

= Access methods
* Heap files, sequential files, Indexes (hash or B+ trees)

= Role of buffer manager

= Practiced the concepts in hwl and lab1

January 22, 2024 CSE 444 - Query Execution 3

DBMS Architecture

Admission Control Parser
C tion M Query Rewrite
onnection Mgr Memory Mgr
Optimizer
Disk Space Mgr
Executor
Replication Services
Process Manager | | Query Processor
Admin Utilities
Access Methods Buffer Manager Shared Utilities
Lock Manager Log Manager [Anatomy of a Db System.
J. Hellerstein & M. Stonebraker.
Storage Manager Red Book. 4ed.]

January 22, 2024 CSE 444 - Query Execution 4

Query Processor

= Query optimization: find a good plan

= Query execution: execute the plan

We start with execution and analyze its cost.
That will inform how to optimize.

January 22, 2024 CSE 444 - Query Execution 5

Query Execution Summary

SQL query transformed into physical plan
= Access path selection for each relation
= Implementation choice for each operator

= Scheduling decisions for operators:

* Single-threaded or parallel
* Pipelined or materialized

Operators given a limited amount of memory

January 22, 2024 CSE 444 - Query Execution 6

Pipelined Query Execution

next()
(On the fly) Tsname
next()
(On the ﬂy) O sscity="Seattle’ A\ sstate="WA' A pno=2
t Need to build a
next() hash-table
(Hash join)]
SNO = SNnO
next() next()
Base data in
Suppliers buffer 000l Supplies
(File scan) File scan)

January 22, 2024 CSE 444 - Query Execution 7

Memory Management

Each operator:

= Pre-allocates heap space for input/output tuples
 Option 1, BPtuples: pointers to data in buffer pool
« Option 2, M-tuples: new tuples on the heap

= Allocates memory for its internal state
* On heap

DMBS limits how much memory each operator,
or each query can use

January 22, 2024 CSE 444 - Query Execution 8

BP-tuples (option 1)

Pre-allocated tuple descriptors, which are arrays

Output tuple " of column references
[Operator] / Reference to a tuple and
— a column offset on a page
—
Input tuple (left) Input tuple (rig\
Empty slot
In this example, the right tuple Butier poo by \\
contains fields that themselves \ ‘ /
come from different input tuples 7
(as a result of an earlier join) \

Disk page\ with many
tuples & attributes

January 22, 2024 CSE 444 - Query Execution 9

BP-tuples (option 1)

Output tuple

[Operator}

\

T
Input tuple (left) Input tuple (rig\

If an operator constructs a tuple Buffer poo

descriptor referencing a tuple
in buffer pool, it must increment \,

pin count of page.

w |

Then decrement it when descriptor
Is cleared.

(more details of pin count eviction policy in book)

January 22, 2024 CSE 444 - Query Execution

M-Tuples (option 2)

Output tuple

[Operator]ﬂém

A
Copy columns from

Input tuple (left) Input tuple (right) buffer pool or create
new, derived values

__/

Buffer pool /

/

More info: See 5t year reading:
[Anatomy of a Db System.

J. Hellerstein & M. Stonebraker.
Red Book. 4ed.]

January 22, 2024 CSE 444 - Query Execution 11

Discussion

Butfer-Pool tuples (BP-tuples)
= Pros: don’t copy the data (great performance)

= Cons:
* Need to pin pages in the BP

 Cannot compute new values:
SELECT pid, price* quantity FROM ...

Heap-tuples, or memory-tuples (M-tuples)

* Pros
* No need to pin pages (except short period - why?)
 Can represent new values: price * quanity

= Cons: data copying can degrade performance

January 22, 2024 CSE 444 - Query Execution 12

Operator Algorithms
(Quick review from 344 today
& new algorithms next time)

January 22, 2024 CSE 444 - Query Execution

Operator Algorithms

Design criteria

= Cost: 1O, CPU, Network

= Memory utilization

= Load balance (for parallel operators)

January 22, 2024 CSE 444 - Query Execution 14

Cost Parameters

= Cost = total number of 1/Os
» This is a simplification that ignores CPU, network

= Parameters:
« B(R) = # of blocks (i.e., pages) for relation R
- T(R) = # of tuples in relation R

* V(R, a) = # of distinct values of attribute a
* When a is a key, V(R,a) = T(R)
« When a is not a key, V(R,a) can be anything < T(R)

January 22, 2024 CSE 444 - Query Execution 15

Convention

= Cost = the cost of reading operands from disk

= Cost of writing the final result to disk is not
included; need to count it separately when
applicable

January 22, 2024 CSE 444 - Query Execution 16

= Join operator algorithms

* One-pass algorithms (Sec. 15.2 and 15.3)
* Index-based algorithms (Sec 15.6)
 Two-pass algorithms (Sec 15.4 and 15.5)

= Note about readings:
* In class, we discuss only algorithms for joins
 Other operators are easier: book has extra details

January 22, 2024 CSE 444 - Query Execution | V4

Join Algorithms

= Hash join
= Nested loop join

= Sort-merge join

January 22, 2024 CSE 444 - Query Execution 18

Hash join: R xS
= Scan R, build buckets in main memory

= Then scan S and join
= Cost: B(R) + B(S)

= One-pass algorithm when B(R) < M

Note: the inner relation is the relation on which we build the hash table
* Usually this is the right relation, i.e. S.
« But the following slides choose the left relation, i.e. R

January 22, 2024 CSE 444 - Query Execution 19

Hash Join Example

Patient(pid, name, address)

Insurance(pid, provider, policy nb)

Patient >« Insurance

Patient

1 ‘Bob’ ‘Seattle’
2 ‘Ela’ ‘Everett’

3 Jill’ ‘Kent’
4 ‘Joe’ ‘Seattle’

— T
(//TwotUMes \\
per page
/
Insurance |
2 ‘Blue’ 123
4 ‘Prem’ 432
4 ‘Prem’ 343
3 ‘GrpH’ 554

January 22, 2024

CSE 444 - Query Execution

20

Hash Join Example

Some large-
Patient o< Insurance enough nb
Memory M = 21 pages
Showing
pid only
< Disk
\ //
Patient Insurance
2 | 4 6 | 6
4 | 3 11 3
2 | 8
This is one page
| 0 with two tuples

Hash Join Example

Step 1: Scan Patient and hash table
Can be done in

method open()

— Disk
\

January 22, 2024 CSE 444 - Query Execution

//
Patient Insurance
AENEE
BE :s
BE (:]o

Memory M = 21 pages

IN memory

Hash h: pid % 5

sl s/°.

>

Input buffer

Hash Join Example

Step 2: Scan Insurance and probe into hash table

Done during
calls to next()

January 22, 2024

— Disk
\ //
Patient Insurance
2 | 41616
4 3 1 3
2|8
8 5 8| 9

Memory M = 21 pages

Hash h: pid % 5

B B

B

2 | 4

Input buffer

CSE 444 - Query Execution

2

Output buffer

Write todiskor ———
pass to next
operator

Hash Join Example

Step 2: Scan Insurance and probe into hash table

Done during
calls to next()

January 22, 2024

— Disk
\ //
Patient Insurance
2 | 41616
4 3 1 3
2|8
8 5 8| 9

Memory M = 21 pages

Hash h: pid % 5

B B

B

2 | 4

Input buffer

CSE 444 - Query Execution

2

Output buffer

Write todiskor ———
pass to next
operator

Hash Join Example

Step 2: Scan Insurance and probe into hash table

Done during
calls to next()

/ .
< Disk

T
e

Patient Insurance

[2]¢

66

B [

113

oa [

8 5 819

January 22, 2024

Memory M = 21 pages

Hash h: pid % 5

sl s/°.

2 4

Input buffer

< K

Output buffer

CSE 444 - Query Execution

Hash Join Example

Step 2: Scan Insurance and probe into hash table

Done during
calls to next()

Patient Insurance

— Disk
\ //

Memory M = 21 pages

Hash h: pid % 5

0 00 oo
4 1 3 II 4

6

Input buffer Output buffer

1

Keep going until read all of Insurance

8 5
January 22, 2024

Cost: B(R) + B(S)

CSE 444 - Query Execution

Discussion

= Hash-join is the workhorse of database systems

= The hash table is built on the heap, not in BP;
hence it is not orﬁanized in pages,
but pages are still convenient to think about it

= Hash-join works great when:
* The inner table fits in main memory
* The hash function is good (never write your ownl)
* The data has no skew (discuss in class...)

January 22, 2024 CSE 444 - Query Execution 27

Nested Loop Joins

= Tuple-based nested loop R @ S
=R is the outer relation, S is the inner relation

for each tuple t; in R do
for each tuple t, in S do
if t; and t, join then output (t;,t,)

What is the Cost?

January 22, 2024 CSE 444 - Query Execution 28

Nested Loop Joins

= Tuple-based nested loop R @ S
=R is the outer relation, S is the inner relation

for each tuple t; in R do
for each tuple t, in S do
if t; and t, join then output (t;,t,)

What is the Cost?

= Cost: B(R) + T(R) B(S)
= Multiple-pass since S is read many times

January 22, 2024 CSE 444 - Query Execution 29

Page-at-a-time Refinement

for each page of tuples rin R do
for each page of tuples sin S do

for all pairs of tuples t;inr, t,ins
if t; and t, join then output (t4,t,)

What is the Cost?

January 22, 2024 CSE 444 - Query Execution 30

Page-at-a-time Refinement

for each page of tuples rin R do
for each page of tuples sin S do

for all pairs of tuples t;inr, t,ins
if t; and t, join then output (t4,t,)

= Cost: B(R) + B(R)B(S) What is the Cost?

January 22, 2024 CSE 444 - Query Execution 31

Page-at-a-time Refinement

//
\

2 [4
Disk

//

Patient Insurance

(2] (e

Input buffer for Patient
Input buffer for Insurance

2

Output buffer

4 | 3 1 3
2|8
89

//

January 22, 2024

CSE 444 - Query Execution

KV

Page-at-a-time Refinement

Input buffer for Patient

/
\

Disk — 4 | 3 | Input buffer for Insurance

//

o

\

Patient Insurance

2

4

6|6 Output buffer

[+T3][]3

2

8

8

9

//

January 22, 2024

CSE 444 - Query Execution

33

Page-at-a-time Refinement

/
\

3 4

(0] —
9)] N

Input buffer for Patient

January 22, 2024

Disk 2 | 8 | Input buffer for Insurance

// . .

Patient Insurance Keep going until read 2
all of Insurance t
2 | 4
° Then repeat for next Output buffer

4 | 3 || 1 page of Patient... until end of Patient
2 | 8
s | e Cost: B(R) + B(R)B(S)

//

CSE 444 - Query Execution

34

Block-Memory Refinement

for each group of M-1 pages rin R do
for each page of tuples s in S do
for all pairs of tuplest,;inr, t,ins
if t; and t, join then output (t4,t,)

What is the Cost?

January 22, 2024 CSE 444 - Query Execution

Block Memor

//
\

Disk

//

Patient Insurance

2

4

6| 6

113

Refinement

- Input buffer for Patient

Input buffer for Insurance

No output buffer: stream to output

Block Memory Refinement

//
\

Disk

//

Patient Insurance

2

4

6| 6

113

M

- Input buffer for Patient

2 | 4 | Input buffer for Insurance

No output buffer: stream to output

Block Memory Refinement

//
\

Disk

//

Patient Insurance

2

4

6| 6

113

M

- Input buffer for Patient

2 | 4 | Input buffer for Insurance

No output buffer: stream to output

Block Memory Refinement

//
\

Disk

//

Patient Insurance

2

4

6| 6

113

M

Input buffer for Patient

2 | 4 | Input buffer for Insurance

No output buffer: stream to output

Block Memory Refinement

//
\

Disk

//

Patient Insurance

2

4

6| 6

113

M

Input buffer for Patient

4 | 3 | Input buffer for Insurance

No output buffer: stream to output

Block Memory Refinement

//
\

Disk

//

Patient Insurance

2

4

6| 6

113

M

Input buffer for Patient

2 | 8 | Input buffer for Insurance

No output buffer: stream to output

Block Memory Refinement

//
\

Disk

//

Patient Insurance

2

4

6| 6

113

M

Input buffer for Patient

Input buffer for Insurance

No output buffer: stream to output

Block Memory Refinement

//
\

Disk

//

Patient Insurance

2

4

6| 6

113

M

Input buffer for Patient

2 | 4 | Input buffer for Insurance

No output buffer: stream to output

Block Memory Refinement

for each group of M-1 pages rin R do
for each page of tuples s in S do
for all pairs of tuplest,;inr, t,ins
if t; and t, join then output (t4,t,)

What is the Cost

January 22, 2024 CSE 444 - Query Execution

Block Memory Refinement

for each group of M-1 pages rin R do
for each page of tuples s in S do
for all pairs of tuplest,;inr, t,ins
if t; and t, join then output (t4,t,)

= Cost: B(R) + B(R)B(S)/(M-1) What is the Cost

January 22, 2024 CSE 444 - Query Execution

Discussion

R x S: R=outer table, S=inner table
= Tuple-based nested loop join is never used

= Page-at-a-time nested loop join:
* Usually combined with index access to inner table
» Efficient when the outer table is small

= Block memory refinement nested loop

* Usually builds a hash table on the outer table
» Efficient when the outer table is small

January 22, 2024 CSE 444 - Query Execution 46

Sort-Merge Join

Sort-merge join: R = S
= Scan R and sort in main memory
= Scan S and sort in main memory

= Merge R and S

= Cost: B(R) + B(S)
= One pass algorithm when B(S) + B(R) <= M
= Typically, this is NOT a one pass algorithm,

* We'll see the multi-pass version next lecture

January 22, 2024 CSE 444 - Query Execution

Sort-Merge Join Example

Step 1: Scan Patient and sort in memory

//
\

Disk >

2
3 4

(@0) LN
Ol

Patient Insurance

2

4

Memory M = 21 pages

K3 33 0

6

4

3

1

2

8

9

January 22, 2024

//

CSE 444 - Query Execution

48

Sort-Merge Join Example

Step 2: Scan Insurance and sort in memory
Memory M = 21 pages

K3 33 0

1121 2131[3]4ll4]6
— Disk
T —— e Te 18 T3

Patient Insurance
2 4 6 6

3 4 4 | 3 11 3

2|8

(@0) —
&) N

//

January 22, 2024 CSE 444 - Query Execution 49

Sort-Merge Join Example

Step 3: Merge Patient and Insurance
Memory M = 21 pages

K3 33 0

1121213134146
~— Disk
\

. — 681 8|9
Patient Insurance E
2 | 4 6|6 Output buffer
Ba -
o] o
~— -

January 22, 2024 CSE 444 - Query Execution 50

Sort-Merge Join Example

Step 3: Merge Patient and Insurance
Memory M = 21 pages

K3 33 0

1121213134146
~— Disk
\

. — 6|81 8|9
Patient Insurance 2
2141|166 Output buffer
4 | 3 113 Keep going until end of first relation
B [2]-
JE
~— -

January 22, 2024 CSE 444 - Query Execution 51

= Join operator algorithms
* One-pass algorithms (Sec. 15.2 and 15.3)
* Index-based algorithms (Sec 15.6)
» Two-pass algorithms (Sec 15.4 and 15.5)

January 22, 2024 CSE 444 - Query Execution 52

Index Based Selection

Selection on equality: o, (R)

= B(R)= size of R in blocks

= T(R) = number of tuples in R

= V(R, a) = # of distinct values of attribute a

January 22, 2024 CSE 444 - Query Execution

Index Based Selection

Selection on equality: o, (R)

= B(R)= size of R in blocks

= T(R) = number of tuples in R

= V(R, a) = # of distinct values of attribute a

What is the cost in each case?
» Clustered index on a:
= Unclustered index on a:

January 22, 2024 CSE 444 - Query Execution

54

Index Based Selection

Selection on equality: o, (R)

= B(R)= size of R in blocks

= T(R) = number of tuples in R

= V(R, a) = # of distinct values of attribute a

What is the cost in each case?
= Clustered index on a: B(R)/V(R,a)

= Unclustered index on a: T(R)/V(R,qa)

January 22, 2024 CSE 444 - Query Execution

Index Based Selection

Selection on equality: o, (R)

= B(R)= size of R in blocks

= T(R) = number of tuples in R

= V(R, a) = # of distinct values of attribute a

What is the cost in each case?
= Clustered index on a: B(R)/V(R,a)

= Unclustered index on a: T(R)/V(R,qa)

Note: we ignore |/O cost for index pages

January 22, 2024 CSE 444 - Query Execution

Index Based Selection

B(R) = 2000
n Exqmple: T(R) = 100,000 cost of 5, (R) =7
V(R, a)=20

= Table scan:
» Index based selection:

January 22, 2024 CSE 444 - Query Execution Y4

Index Based Selection

B(R) = 2000
n Exqmple: T(R) = 100,000 cost of 5, (R) =7
V(R, a)=20

= Table scan: B(R) = 2,000 1/Os

» Index based selection:

January 22, 2024 CSE 444 - Query Execution 58

Index Based Selection

B(R) = 2000
n Exqmple: T(R) = 100,000 cost of 5, (R) =7
V(R, a)=20

= Table scan: B(R) = 2,000 1/Os

» Index based selection:

e If index is clustered:
e If index is unclustered:

January 22, 2024 CSE 444 - Query Execution 59

Index Based Selection

B(R) = 2000
n Exqmple: T(R) = 100,000 cost of 5, (R) =7
V(R, a)=20

= Table scan: B(R) = 2,000 1/Os

» Index based selection:
* If index is clustered: B(R)/V(R,a) = 100 I/Os

e |If index is unclustered:

January 22, 2024 CSE 444 - Query Execution 60

Index Based Selection

B(R) = 2000
n Example: T(R) = 100,000 cost of 5, (R) =7
V(R, a)=20

= Table scan: B(R) = 2,000 1/Os

= Index based selection:
* If index is clustered: B(R)/V(R,a) = 100 I/Os
e |f index is unclustered: T(R)/V(R,a) = 5,000 1/Os

January 22, 2024 CSE 444 - Query Execution 61

Index Based Selection

B(R) = 2000
n Example: T(R) = 100,000 cost of 5, (R) =7
V(R,a)=20

= Table scan: B(R) = 2,000 1/Os

= Index based selection:
* If index is clustered: B(R)/V(R,a) = 100 I/Os
e |f index is unclustered: T(R)/V(R,a) = 5,000 1/Os

Lesson: Don’t build unclustered indexes when V(R,a) is small !

January 22, 2024 CSE 444 - Query Execution 62

Index Nested Loop Join

RS
= Assume S has an index on the join attribute

= [terate over R, for each tuple fetch
corresponding tuple(s) from S

= Cost:
* If index on S is clustered: B(R) + T(R)B(S)/V(S,a)
* If index on S is unclustered: B(R) + T(R)T(S)/V(S,a)

January 22, 2024 CSE 444 - Query Execution

