
1January 12, 2024

Database System Internals

CSE 444 - Indexing

Indexing

Announcements

§ SimpleDB Partner Sign-up
• https://forms.gle/yPac3AvyRKNF915LA
• Last chance to submit by noon today

§ Lab 1 Part 2: due next Wednesday
• Random partner option should see a response email

later today
• Advice for working as team:

• Make sure to schedule time to plan and/or pair code
• Trying to strictly divide portions of the code with little

communication often doesn’t go well
• Be up-front about how much time you will commit and when

CSE 444 - Indexing 2January 12, 2024

https://forms.gle/yPac3AvyRKNF915LA

Recap: Heap File

CSE 444 - Indexing 3

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

Data
page

A sequence of pages (implementation in SimpleDB)

Some pages have space and other pages are full
Add pages at the end when need more space

Works well for small files
But finding free space requires scanning the file…

January 12, 2024

4

Query Execution In SimpleDB

CSE 444 - ArchitectureJanuary 12, 2024

HeapFile for R

Data on disk: OS Files

Iterator interface
• open()
• next()
• close()

SeqScan
hf.next()

Page 1

5

Query Execution In SimpleDB

CSE 444 - ArchitectureJanuary 12, 2024

HeapFile for R

Data on disk: OS Files

Iterator interface
• open()
• next()
• close()

SeqScan
hf.next()

Page 1

6

Query Execution In SimpleDB

CSE 444 - ArchitectureJanuary 12, 2024

HeapFile for R

Data on disk: OS Files

Iterator interface
• open()
• next()
• close()

SeqScan
hf.next()

Page 1

7

Query Execution In SimpleDB

CSE 444 - ArchitectureJanuary 12, 2024

HeapFile for R

7Data on disk: OS Files

Iterator interface
• open()
• next()
• close()

Read/write pages from disk

SeqScan
hf.next()

End?

Page 1

8

Query Execution In SimpleDB

CSE 444 - ArchitectureJanuary 12, 2024

HeapFile for R

Buffer
Pool

Manager

8Data on disk: OS Files

Iterator interface
• open()
• next()
• close()

Read/write pages from disk

Database shares
a single cache in Buffer Pool

HeapFile for S

HeapFile for T

HeapFileN…

Heap files for
other relations

bp.getPage()

hf.readPage()

SeqScan
hf.next()

End?

Page 1

9

Query Execution In SimpleDB

CSE 444 - ArchitectureJanuary 12, 2024

HeapFile for R

Buffer
Pool

Manager

9Data on disk: OS Files

Iterator interface
• open()
• next()
• close()

Read/write pages from disk

Database shares
a single cache in Buffer Pool

HeapFile for S

HeapFile for T

HeapFileN…

Heap files for
other relations

bp.getPage()

hf.readPage()

SeqScan
hf.next()

Page 2

Buffer Manager

§ Brings pages in from memory and caches them
§ Eviction policies

• Random page (ok for SimpleDB)
• Least-recently used (LRU)
• The “clock” algorithm

§Keeps track of which pages are dirty
• A dirty page has changes not reflected on disk
• Implementation: Each page includes a dirty bit

10CSE 444 - IndexingJanuary 12, 2024

Buffer Manager

CSE 444 - Indexing 11

Disk

Main
memory

Page requests from higher-level code

Buffer pool

Disk page

Free frame

1 page corresponds
to 1 disk block

Disk is a collection
of blocks

Buffer pool manager
Access methods

January 12, 2024

Pushing Updates to Disk

§ When inserting a tuple, HeapFile inserts it on a page
but does not write the page to disk

§ When deleting a tuple, HeapFile deletes tuple from a
page but does not write the page to disk

§ The buffer manager worries when to write pages to
disk (and when to read them from disk)

§ When need to add new page to file, HeapFile adds
page to file on disk and then reads it through buffer
manager

CSE 444 - Indexing
12January 12, 2024

Basic Access Method: Heap File

API
§Create or destroy a file
§ Insert a record
§Delete a record with a given rid (rid)

• rid: unique tuple identifier
§Get a record with a given rid

• Not necessary for sequential scan operator
• But used with indexes

§Scan all records in the file

CSE 444 - Indexing 13January 12, 2024

Basic Access Method: Heap File

API
§Create or destroy a file
§ Insert a record
§Delete a record with a given rid (rid)

• rid: unique tuple identifier (more later)
§Get a record with a given rid

• Not necessary for sequential scan operator
• But used with indexes

§Scan all records in the file

CSE 444 - Indexing 14January 12, 2024

Next: how to
scan only

some records

Access by Attribute Value

§ Scan all Suppliers where city=’Seattle’

§ Scan all Students with GPA > 3.5

§ Scan all Students with SID = 12345 // just one

CSE 444 - Indexing 15January 12, 2024

CSE 444 - Indexing

Searching in a Heap File

30 18 …
70 21

20 20
40 19

80 19
60 18

10 21
50 22

File is not sorted on any attribute
Student(sid: int, age: int, …)

1 record

1 page

16January 12, 2024

CSE 444 - Indexing

Heap File Search Example

§10,000 students
§10 student records per page
§ Total number of pages: 1,000 pages

§ Find student where sid =12345

§ Find all students where age > 20

§Can we do better?

17January 12, 2024

CSE 444 - Indexing

Heap File Search Example

§10,000 students
§10 student records per page
§ Total number of pages: 1,000 pages

§ Find student where sid =12345
• Must read on average 500 pages

§ Find all students where age > 20
• Must read all 1,000 pages

§Can we do better?

18January 12, 2024

CSE 444 - Indexing

Sorted File (a.k.a. Sequential File)

10 21 …
20 20

30 18
40 19

50 22
60 18

70 21
80 19

File sorted on an attribute, usually on primary key
Student(sid: int, age: int, …)

19January 12, 2024

CSE 444 - Indexing

Sequential File Example

§ Total number of pages: 1,000 pages

§ Find student where sid=12345
• How many pages do we need to read?
• Binary search: read log2(1,000) ≈ 10 pages

20January 12, 2024

CSE 444 - Indexing

Sequential File Example

§ Total number of pages: 1,000 pages

§ Find student where sid=12345
• How many pages do we need to read?
• Binary search: read log2(1,000) ≈ 10 pages

21January 12, 2024

Limitations of Sorted Files

We want to support these kinds of queries:

§ Find student where sid=12345

§ Find students where age > 20

§ Insert a new student

What are the limitations of using a sorted file?

January 12, 2024 CSE 444 - Indexing 22

Creating Indexes in SQL

23

CREATE TABLE Student(sid int, age int, gpa real, …);

select *
from Student
where sid=12345

CSE 444 - IndexingJanuary 12, 2024

Creating Indexes in SQL

24

CREATE INDEX s_sid ON Student(sid)

CREATE TABLE Student(sid int, age int, gpa real, …);

select *
from Student
where sid=12345

CSE 444 - IndexingJanuary 12, 2024

Creating Indexes in SQL

25

CREATE INDEX s_sid ON Student(sid)

CREATE TABLE Student(sid int, age int, gpa real, …);

CREATE INDEX s_age ON Student(age)

select *
from Student
where sid=12345

CSE 444 - IndexingJanuary 12, 2024

Creating Indexes in SQL

26

CREATE INDEX s_sid ON Student(sid)

CREATE TABLE Student(sid int, age int, gpa real, …);

CREATE INDEX s_age ON Student(age)

select *
from Student
where sid=12345

select *
from Student
where age > 25

CSE 444 - IndexingJanuary 12, 2024

CSE 444 - Indexing

Outline

§ Index structures
§Hash-based indexes
§ B+ trees

27

Today

Next time

January 12, 2024

Indexes

§ Index: separate file with fast access by “key” value

§ Contains pairs of the form (key, RID)

§ Indexes are access methods! Same API as Heap Files

January 12, 2024 CSE 444 - Indexing 28

18

18

19

19

20

21

21

22

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

Index File
Search key: age Data File

(sequential file
sorted on sid)

Indexes

§Search key = can attribute or set of attributes
• not the same as the primary key; not a key

§ Index = collection of data entries

§Data entry for key k can be:
• (k, RID)
• (k, list-of-RIDs)
• Record with key k; “clustered” or “primary” index

January 12, 2024 CSE 444 - Indexing 29

Different Types of Files

Imagine one relation, say Student

§ The Student file can be:
• Heap file (tuples stored without any order)
• Sequential file (tuples sorted on some attribute(s))
• Clustered (primary) index file (relation+index)

§ There can be several unclustered (secondary)
index files that store (key,rid) pairs

CSE 444 - Indexing 30January 12, 2024

How Indexes Help
We want to support these kinds of queries
Assume Student = a heap file

§ Find student where sid=12345
• Use an index on Student(sid)

§ Find students where age > 20
• Use an index on Student(age)

§ Insert a new student
• Insert in the Student heap file -- easy
• Insert in indexes Student(sid), Student(age) – will discuss

January 12, 2024 CSE 444 - Indexing 31

Clustered Index (aka Primary Index)

§Records in data file have same order as in index
§Dense index: sequence of (key,rid) pairs

January 12, 2024 CSE 444 - Indexing 32

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

1 data entry

1 page

Index File Data File (Sequential file)

Clustered Index (aka Primary Index)

§Records in data file have same order as in index
§ Sparse index: store a subset of (key,rid) pairs

January 12, 2024 CSE 444 - Indexing 33

10

30

50

70

90

110

130

150

10

20

30

40

50

60

70

80Can store more search
keys in same number of

index files

Clustered Index with Duplicate Keys

§Dense index:

January 12, 2024 CSE 444 - Indexing 34

10

20

30

40

50

60

70

80

10

10

10

20

20

20

30

40

Clustered Index: Back to Example

§Assume entire index fits in main memory

§ Find student where sid=12345
• Index (dense or sparse) points directly to the page
• Read only 1 page from disk

§ Find all students where age > 20
• Add a second index…

January 12, 2024 CSE 444 - Indexing 35

Secondary Indexes

§ Do not determine placement of records in data files
§ Always dense (why ?)

January 12, 2024 CSE 444 - Indexing 36

18

18

19

19

20

21

21

22

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

The Confusing Terminology of Indexes…

§ Clustered index:
• Means: keys close in the index are also close in the data
• Can co-exist with the data file (quite common)
• Can have only one clustered index
• Sometimes called “primary index”

§ Unclustered index:
• Means: orders in the index and the data differ
• Always a separate file
• Can have as many unclustered indexes as we want
• Sometimes called “secondary index”

§ Some people use different convetion:
• Primary index = index on the primary key
• Secondary index = everything else

January 12, 2024 CSE 444 - Indexing 37

The Confusing Terminology of Indexes…

§ Clustered index:
• Means: keys close in the index are also close in the data
• Can co-exist with the data file (quite common)
• Can have only one clustered index
• Sometimes called “primary index”

§ Unclustered index:
• Means: order in the index and order in the data differ
• Always a separate file
• Can have as many unclustered indexes as we want
• Sometimes called “secondary index”

§ Some people use different convetion:
• Primary index = index on the primary key
• Secondary index = everything else

January 12, 2024 CSE 444 - Indexing 38

Index Organization

§ The index is a collection of (key, RID(s)) pairs

§Needs to support efficiently:
• Find the entry where key=[some value]
• Insert a new (key, RID)
• Delete a (key, RID)

§How would you design the index data structure?

January 12, 2024 CSE 444 - Indexing 39

CSE 444 - Indexing

Index Organization

§ The index is a collection of (key, RID(s)) pairs

§Needs to support efficiently:
• Find the entry where key=[some value]
• Insert a new (key, RID)
• Delete a (key, RID)

§How would you design the index data structure?
• Ordered file – problem here (why?)

40January 12, 2024

CSE 444 - Indexing

Index Organization

§ The index is a collection of (key, RID(s)) pairs

§Needs to support efficiently:
• Find the entry where key=[some value]
• Insert a new (key, RID)
• Delete a (key, RID)

§How would you design the index data structure?
• Ordered file – problem here (why?)
• Hash table

41January 12, 2024

CSE 444 - Indexing

Index Organization

§ The index is a collection of (key, RID(s)) pairs

§Needs to support efficiently:
• Find the entry where key=[some value]
• Insert a new (key, RID)
• Delete a (key, RID)

§How would you design the index data structure?
• Ordered file – problem here (why?)
• Hash table
• B+ tree

42January 12, 2024

BRIEF Review of Hash Tables

0
1 765
2
3
4
5
6
7 999
8
9

Arrays are very efficient:
• Find(T[7])

January 12, 2024 CSE 444 - Indexing 43

BRIEF Review of Hash Tables

0
1 765
2
3
4
5
6
7 999
8
9

Arrays are very efficient:
• Find(T[7])
• Set T[3] := 234

January 12, 2024 CSE 444 - Indexing 44

BRIEF Review of Hash Tables

0
1 765
2
3 234
4
5
6
7 999
8
9

Arrays are very efficient:
• Find(T[7])
• Set T[3] := 234

January 12, 2024 CSE 444 - Indexing 45

BRIEF Review of Hash Tables

0
1
2
3
4
5
6
7
8
9

Problem: the key is not 0,1,2,…9 but is a string k

January 12, 2024 CSE 444 - Indexing 46

BRIEF Review of Hash Tables

Alice
Fred
Bob

…
…
??
…
…
…
…

Problem: the key is not 0,1,2,…9 but is a string k

January 12, 2024 CSE 444 - Indexing 47

BRIEF Review of Hash Tables

0
1
2
3
4
5
6
7
8
9

h(k) = sum(k) mod 10

A (naïve) hash function:

Problem: the key is not 0,1,2,…9 but is a string k

January 12, 2024 CSE 444 - Indexing 48

BRIEF Review of Hash Tables

0
1
2
3
4
5
6
7
8
9

h(k) = sum(k) mod 10

A (naïve) hash function:

Problem: the key is not 0,1,2,…9 but is a string k

Example: h(“Fred”) =
= (ascii(“F”)+ascii(“r”)+…)
 mod 10
= (70 + 114 + 101 + 100)
 mod 10
= 5

January 12, 2024 CSE 444 - Indexing 49

BRIEF Review of Hash Tables

0
1
2
3
4
5
6
7
8
9

Separate chaining:

h(k) = sum(k) mod 10

A (naïve) hash function:

Fred

Problem: the key is not 0,1,2,…9 but is a string k

Example: h(“Fred”) =
= (ascii(“F”)+ascii(“r”)+…)
 mod 10
= (70 + 114 + 101 + 100)
 mod 10
= 5

January 12, 2024 CSE 444 - Indexing 50

BRIEF Review of Hash Tables

0
1
2
3
4
5
6
7
8
9

Separate chaining:

h(k) = sum(k) mod 10

A (naïve) hash function:

Alice Bob

Ann

Problem: the key is not 0,1,2,…9 but is a string k

h(“Alice”) = h(“Bob”) = 3
Called collisions

Fred

January 12, 2024 CSE 444 - Indexing 51

BRIEF Review of Hash Tables

0
1
2
3
4
5
6
7
8
9

Separate chaining:

h(k) = sum(k) mod 10

A (naïve) hash function:

Alice Bob

Ann

Alice

Duplicates key OK

Problem: the key is not 0,1,2,…9 but is a string k

Fred

January 12, 2024 CSE 444 - Indexing 52

BRIEF Review of Hash Tables

0
1
2
3
4
5
6
7
8
9

Separate chaining:

h(k) = sum(k) mod 10

A (naïve) hash function:

Alice Bob

Ann

Alice

Duplicates key OK

Operations:

find(Bob) = ??
insert(Jon) = ??
delete(Ann) = ??

Problem: the key is not 0,1,2,…9 but is a string k

Fred

January 12, 2024 CSE 444 - Indexing 53

BRIEF Review of Hash Tables

0
1
2
3
4
5
6
7
8
9

Separate chaining:

h(k) = sum(k) mod 10

A (naïve) hash function:

Alice Bob

Ann

Alice

Duplicates key OK

Operations:

find(Bob) = ??
insert(Jon) = ??
delete(Ann) = ??

Problem: the key is not 0,1,2,…9 but is a string k

Fred

January 12, 2024 CSE 444 - Indexing 54

BRIEF Review of Hash Tables

0
1
2
3
4
5
6
7
8
9

Separate chaining:

h(k) = sum(k) mod 10

A (naïve) hash function:

Alice Bob

Jon

Ann

Alice

Duplicates key OK

Operations:

find(Bob) = ??
insert(Jon) = ??
delete(Ann) = ??

Problem: the key is not 0,1,2,…9 but is a string k

Fred

January 12, 2024 CSE 444 - Indexing 55

BRIEF Review of Hash Tables

0
1
2
3
4
5
6
7
8
9

Separate chaining:

h(k) = sum(k) mod 10

A (naïve) hash function:

Alice Bob

Ann

Alice

Duplicates key OK

Operations:

find(Bob) = ??
insert(Jon) = ??
delete(Ann) = ??

Problem: the key is not 0,1,2,…9 but is a string k

JonFred

January 12, 2024 CSE 444 - Indexing 56

BRIEF Review of Hash Tables

§ insert(k, v) = inserts a key k with value v
• Duplicate k’s may be OK or may not be OK

§ find(k) = returns the value v associated to k,
or the list of all values associated to k

§delete(k)

CSE 444 - Indexing 57January 12, 2024

Discussion of Hash Tables

§Hash function:
• Should distribute values uniformly
• Never write your own! (why is x mod 10 bad?)

Use a standard library function
• Best: concatenate with fixed, random seed (in class)

§Hash table:
• Size of table: large enough to avoid collisions
• Typically: size of table ≈ size of data
• Why not make it small? Why not make it big?
• Problem: hash table allocated statically, at creation
• Book describes solutions to increase size dynamically

January 12, 2024 CSE 444 - Indexing 58

CSE 444 - Indexing

Hash-Based Index

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

Data File

Good for point queries but not range queries

59January 12, 2024

CSE 444 - Indexing

Hash-Based Index

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

H1

h1(sid) = 00

h1(sid) = 11

sid

Data File
Primary hash-based index

Good for point queries but not range queries

60January 12, 2024

CSE 444 - Indexing

Hash-Based Index

18

18

20

22

19

21

21

19

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

H2age

h2(age) = 00

h2(age) = 01 H1

h1(sid) = 00

h1(sid) = 11

sid

Data File
Primary hash-based index

Secondary
hash-based index
(age, rid) pairs

Good for point queries but not range queries

61January 12, 2024

CSE 444 - Indexing

Making Indexes

§Why not create an index on every attribute?

62January 12, 2024

CSE 444 - Indexing

B+ Trees

§ Search trees (quick review in class)

§ Idea in B Trees
• Make 1 node = 1 page (= 1 block)
• Maximize number of children per node

§ Idea in B+ Trees
• Keys are stored on the leaves (not internal nodes)
• Leaves are linked in a list, for range queries

63January 12, 2024

CSE 444 - Indexing

B+ Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 < 80

20 ≤40 < 60

64January 12, 2024

CSE 444 - Indexing

B+ Trees Properties

§ For each node except the root, maintain 50%
occupancy of keys

§ Insert and delete must rebalance to maintain
constraints

65January 12, 2024

B+ Trees Details

§ Parameter d = the degree
§ Each node has d <= m <= 2d keys (except root)
§ Each node also has m+1 pointers

§ Each leaf has d <= m <= 2d keys:

January 12, 2024 CSE 444 - Indexing 66

B+ Trees Details

§ Parameter d = the degree
§ Each node has d <= m <= 2d keys (except root)
§ Each node also has m+1 pointers

§ Each leaf has d <= m <= 2d keys:

January 12, 2024 CSE 444 - Indexing 67

Keys k < 30 Keys 30<=k<120 Keys 120<=k<240
Keys 240<=k

30 120 240

B+ Trees Details

§ Parameter d = the degree
§ Each node has d <= m <= 2d keys (except root)
§ Each node also has m+1 pointers

§ Each leaf has d <= m <= 2d keys:

January 12, 2024 CSE 444 - Indexing 68

Keys k < 30 Keys 30<=k<120 Keys 120<=k<240
Keys 240<=k

Left pointer of k:
to keys < k

Right pointer of k:
to keys >= k

30 120 240

B+ Trees Details

§ Parameter d = the degree
§ Each node has d <= m <= 2d keys (except root)
§ Each node also has m+1 pointers

§ Each leaf has d <= m <= 2d keys:

January 12, 2024 CSE 444 - Indexing 69

Keys k < 30 Keys 30<=k<120 Keys 120<=k<240
Keys 240<=k

Left pointer of k:
to keys < k

Right pointer of k:
to keys >= k

30 120 240

40 50 60 70

40 50 60

Next leaf

Data records 70

CSE 444 - Indexing

B+ Tree Design

§How large d ? Make one node fit on one block
§ Example:

• Key size = 4 bytes
• Pointer size = 8 bytes
• Block size = 4096 bytes

§2d x 4 + (2d+1) x 8 <= 4096
§d = 170

70

30 120 240

(e.g. d = 2)

January 12, 2024

CSE 444 - Indexing

B+ Trees in Practice

§ Typical order: d=100. Typical fill-factor: 66%.
• average node fanout (children) = 200*0.66 = 133

§ Typical capacities
• Height 4: 1334 = 312,900,700 records
• Height 3: 1333 = 2,352,637 records

§Can often hold top levels in buffer pool
• Level 1 = 1 page = 8 Kbytes
• Level 2 = 133 pages = 1 Mbyte
• Level 3 = 17,689 pages = 133 Mbytes

71January 12, 2024

CSE 444 - Indexing

Insertion in a B+ Tree

Insert (K, P)
§ Find leaf where K belongs, insert
§ If no overflow (2d keys or less), halt
§ If overflow (2d+1 keys), split node, insert in parent:

§ If leaf, also keep K3 in right node
§ When root splits, new root has 1 key only

parent

72January 12, 2024

K2 K3 K5

P0 P2 P3 P5

Insert k1

CSE 444 - Indexing

Insertion in a B+ Tree

Insert (K, P)
§ Find leaf where K belongs, insert
§ If no overflow (2d keys or less), halt
§ If overflow (2d+1 keys), split node, insert in parent:

§ If leaf, also keep K3 in right node
§ When root splits, new root has 1 key only

parent

73January 12, 2024

K1 K2 K3 K5

P0 P1 P2 P3 P5

Insert k1

CSE 444 - Indexing

Insertion in a B+ Tree

Insert (K, P)
§ Find leaf where K belongs, insert
§ If no overflow (2d keys or less), halt
§ If overflow (2d+1 keys), split node, insert in parent:

§ If leaf, also keep K3 in right node
§ When root splits, new root has 1 key only

parent

74January 12, 2024

K1 K2 K3 K5

P0 P1 P2 P3 P5

Insert k4

CSE 444 - Indexing

Insertion in a B+ Tree

Insert (K, P)
§ Find leaf where K belongs, insert
§ If no overflow (2d keys or less), halt
§ If overflow (2d+1 keys), split node, insert in parent:

§ If leaf, also keep K3 in right node
§ When root splits, new root has 1 key only

parent

75January 12, 2024

K1 K2 K3 K5

P0 P1 P2 P3 P5

Insert k4

CSE 444 - Indexing

Insertion in a B+ Tree

Insert (K, P)
§ Find leaf where K belongs, insert
§ If no overflow (2d keys or less), halt
§ If overflow (2d+1 keys), split node, insert in parent:

§ If leaf, also keep K3 in right node
§ When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 P5

parent

76January 12, 2024

Insert k4

CSE 444 - Indexing

Insertion in a B+ Tree

Insert (K, P)
§ Find leaf where K belongs, insert
§ If no overflow (2d keys or less), halt
§ If overflow (2d+1 keys), split node, insert in parent:

§ If leaf, also keep K3 in right node
§ When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 P5

K1 K2

P0 P1 P2

K4 K5

P3 P4 p5

parent
 K3

parent

77January 12, 2024

Insert k4

CSE 444 - Indexing

Insertion in a B+ Tree

Insert (K, P)
§ Find leaf where K belongs, insert
§ If no overflow (2d keys or less), halt
§ If overflow (2d+1 keys), split node, insert in parent:

§ If leaf, also keep K3 in right node
§ When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 P5

K1 K2

P0 P1 P2

K4 K5

P3 P4 p5

parent
 K3

parent

78January 12, 2024

Insert k4

CSE 444 - Indexing

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

79January 12, 2024

CSE 444 - Indexing

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 9019

After insertion

80January 12, 2024

CSE 444 - Indexing

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 9019

Now insert 25

81January 12, 2024

CSE 444 - Indexing

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

After insertion

50

82January 12, 2024

CSE 444 - Indexing

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

But now have to split !

50

83January 12, 2024

CSE 444 - Indexing

Insertion in a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

After the split

50

30 40 50

84January 12, 2024

CSE 444 - Indexing

Deletion in a B+ Tree

Delete (K, P)
§ Find leaf where K belongs, delete
§ Check for capacity
§ If leaf below capacity, search adjacent nodes (left first,

then right) for extra tuples and rotate them to new leaf
§ If adjacent nodes 50% full, merge with on adjacent node

This removes a key/child from parent;
repeat algorithm on parent node

85January 12, 2024

CSE 444 - Indexing

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019

Delete 30

50

30 40 50

86January 12, 2024

CSE 444 - Indexing

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 9019

After deleting 30

50

40 50

May change to
40, or not

87January 12, 2024

CSE 444 - Indexing

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 9019

Now delete 25

50

40 50

88January 12, 2024

CSE 444 - Indexing

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 9019

After deleting 25
Need to rebalance
Rotate

50

40 50

89January 12, 2024

CSE 444 - Indexing

Deletion from a B+ Tree

80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 9019

Now delete 40

50

40 50

90January 12, 2024

CSE 444 - Indexing

Deletion from a B+ Tree

80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 60 65 80 85 9019

After deleting 40
Rotation not possible
Need to merge nodes

50

50

91January 12, 2024

CSE 444 - Indexing

Deletion from a B+ Tree

80

19 60 100 120 140

10 15 18 19 20 50 60 65 80 85 90

10 15 18 20 60 65 80 85 9019

Final tree

50

92January 12, 2024

Clustered v.s. Unclustered B+ Trees

January 12, 2024 CSE 444 - Indexing 93

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

Note: can also store data records directly as data entries

CSE 444 - Indexing

Searching a B+ Tree

§ Exact key values:
• Start at the root
• Proceed down, to the leaf

§Range queries:
• Find lowest bound as above
• Then sequential traversal

§ Less effective for multi-range
• Can only use one B+ tree,

ignore the other(s)
• Called access path selection

Select name
From Student
Where age = 25

Select name
From Student
Where 20 <= age
 and age <= 30

94January 12, 2024

Select name
From Student
Where age = 25
 and GPA = 3.5

CSE 444 - Indexing

Summary on B+ Trees

§Default index structure on most DBMSs
§Many improvements/optimizations

• Prefix compression:
“Johannes”, “John”, “Johnson”, “Jon”,…
store only suffices, to save space

• Allow fill capacity to decrease slightly below 50% to
avoid cascading splits and merges

• Optimizations for transactions: tree-locking protocol
instead of Strict 2PL

§ For multi-dimensional queries, need R-trees:
• E.g. age = 25 and GPA > 3.5
• R-trees are more difficult to search and rebalance

95January 12, 2024

