
Course evals

Please take a few minutes to fill out the course evaluations:

https://uw.iasystem.org/survey/290305

And thank you all for your hard work this quarter!

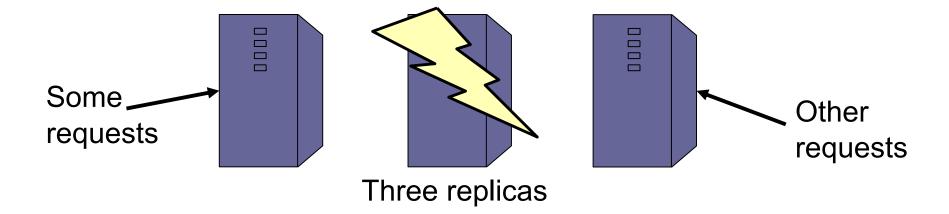
Database System Internals Replication

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

References

- Ullman Book Chapter 20.6
- Database management systems.

Ramakrishnan and Gehrke.


Third Ed. Chapter 22.11

Outline

- Goals of replication
- Three types of replication
 - Synchronous (aka eager) replication
 - Asynchronous (aka lazy) replication
 - Two-tier replication

Goals of Replication

- Goal 1: consistency. Always read latest update
- Goal 2: availability. Every request → a response
- Goal 3: performance. Fast read/writes

Discussion: NoSQL

New problem in the early 2000's

- Startup company launces Website backed up by MySQL, works fine with 50 users
- Suddenly, they are successful and have 1M users
- MySQL cannot keep up

Discussion: NoSQL

New problem in the early 2000's

- Startup company launces Website backed up by MySQL, works fine with 50 users
- Suddenly, they are successful and have 1M users
- MySQL cannot keep up

NoSQL:

- Distributed database (replication, partition)
- Give up strong consistency in favor of availability and performance (as we'll see discuss next)

Discussion: NoSQL

New problem in the early 2000's

- Startup company launces Website backed up by MySQL, works fine with 50 users
- Suddenly, they are successful and have 1M users
- MySQL cannot keep up

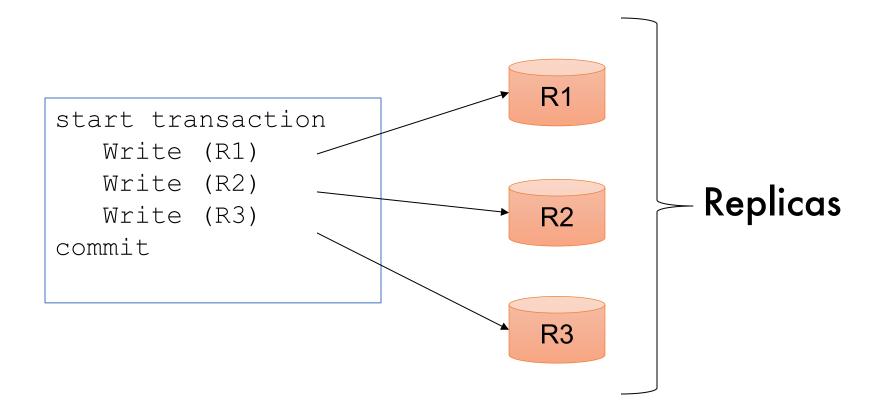
NoSQL:

- Distributed database (replication, partition)
- Give up strong consistency in favor of availability and performance (as we'll see discuss next)

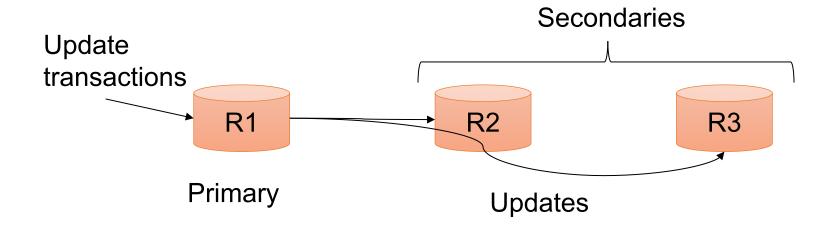
Today: strong consistency is standard requirement

Types of Replication

Synchronous


Asynchronous

Synchronous Replication


- Also called eager replication
- All updates are applied to all replicas (or to a majority) as part of a single transaction (need two phase commit)
- Transactions must acquire global locks
 - Nobody can read while we synchronize the replicas
- Main goal: as if there was only one copy
 - Maintain consistency
 - Maintain one-copy serializability
 - I.e., execution of transactions has same effect as an execution on a non-replicated db

Synchronous Replication

Synchronous Master Replication

- One master for each object holds primary copy
 - The "Master" is also called "Primary"
 - To update object, transaction must acquire a lock at the master
 - Lock at the master is global lock
- Master propagates updates to replicas synchronously
 - · Updates propagate as part of the same distributed transaction
 - Need to run 2PC at the end

What happens when a secondary crashes?

- What happens when a secondary crashes?
 - Nothing happens
 - When secondary recovers, it catches up

- What happens when a secondary crashes?
 - Nothing happens
 - · When secondary recovers, it catches up
- What happens when the master/primary fails?

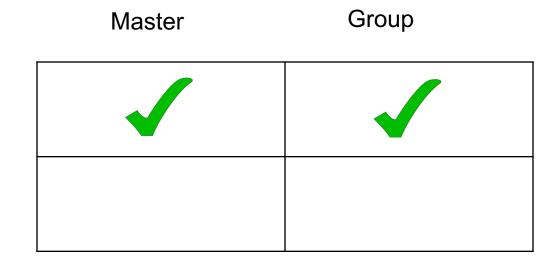
- What happens when a secondary crashes?
 - Nothing happens
 - · When secondary recovers, it catches up
- What happens when the master/primary fails?
 - Blocking would hurt availability
 - Must chose a new primary: run election

Network Failures

Network failures can cause trouble...

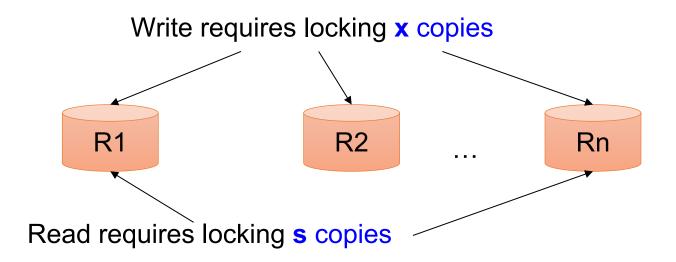
- Secondaries think that primary failed
- Secondaries elect a new primary
- But primary can still be running
- Now have two primaries!

Majority Consensus

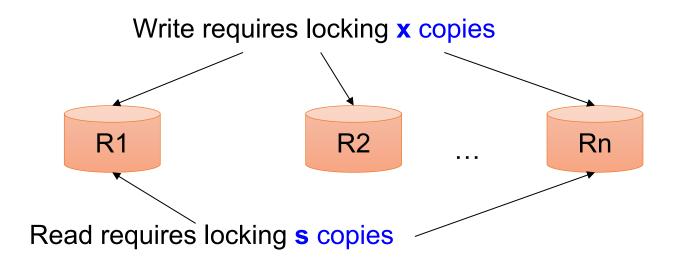

 To avoid problem, only majority partition can continue processing at any time

- In general,
 - Whenever a replica fails or recovers...
 - ...a set of communicating replicas must determine...
 - ...whether they have a majority before they can continue

Types of Replication


Synchronous

Asynchronous

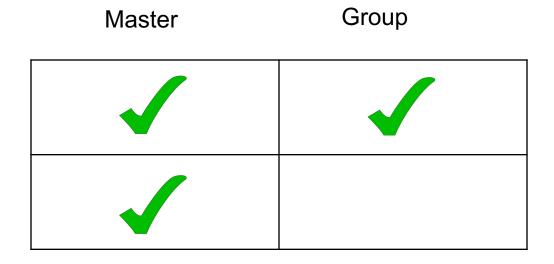

Master-less

- Any node can initiate a transaction!
- Need to gather a number of nodes that agree on a particular transaction
- Each copy has its own lock

With n copies

- Exclusive lock on x copies is global exclusive lock
- Shared lock on s copies is global shared lock
- Must have: x > n/2 and s + x > n
- Version numbers serve to identify current copy

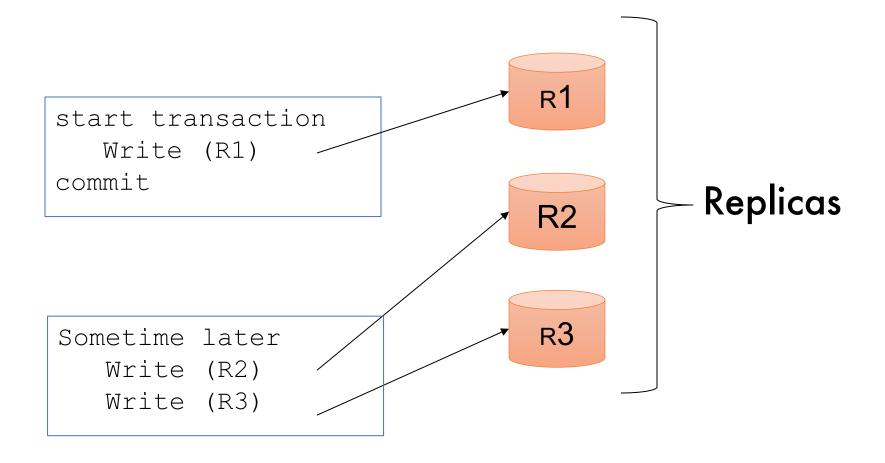
- Majority locking
 - $s = x = \lceil (n+1)/2 \rceil$ eg: 11 nodes: need 6 locked
 - Usually not attractive because reads are slowed down
- Read-locks-one, write-locks-all
 - s=1 and x=n, high read performance
 - Reads are very fast


Synchronous Replication Properties

- Favours consistency over availability
 - Only majority partition can process requests
 - There appears to be a single copy of the db
- High runtime overhead
 - Must lock and update at least majority of replicas
 - Two-phase commit
 - Runs at pace of slowest replica in quorum
 - So overall system is now slower
 - Higher deadlock rate (transactions take longer)

Types of Replication

Synchronous


Asynchronous

Asynchronous Replication

- Also called lazy replication
- Also called optimistic replication
- Main goals: availability and performance
- Approach
 - One replica updated by original transaction
 - Updates propagate asynchronously to other replicas

Asynchronous Replication

Asynchronous Master Replication

One master holds primary copy

- Transactions update primary copy
- Master asynchronously propagates updates to replicas, which process them in same order
 E.g. through log shipping
- Ensures single-copy serializability

What happens when master/primary fails?

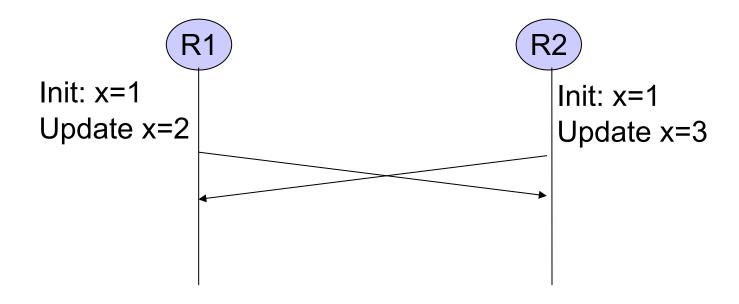
- Can lose most recent transactions when primary fails!
- After electing a new primary, secondaries must agree who is most up-to-date

- A master operates on a database
- The DB needs to be replicated to one or several replicas (e.g. hot stand-by databases)

- A master operates on a database
- The DB needs to be replicated to one or several replicas (e.g. hot stand-by databases)
- Log Shipping Technique

- A master operates on a database
- The DB needs to be replicated to one or several replicas (e.g. hot stand-by databases)
- Log Shipping Technique:
 - Master node ships the tail of the log to the replicas
 E.g. when it flushes the log tail to disk
 - Replicas REDO the log; this is very efficient
 - Need very little systems development: we create the log anyway, and we have the REDO function anyway

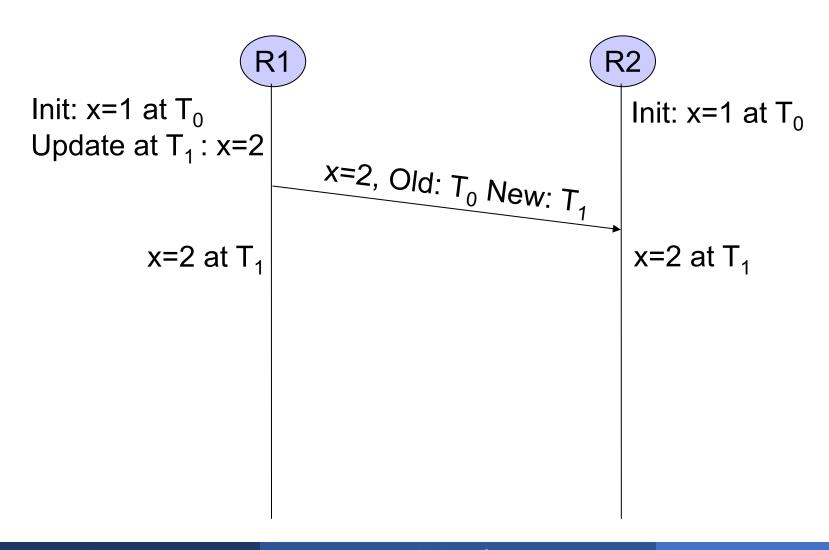
- A master operates on a database
- The DB needs to be replicated to one or several replicas (e.g. hot stand-by databases)
- Log Shipping Technique:
 - Master node ships the tail of the log to the replicas
 E.g. when it flushes the log tail to disk
 - Replicas REDO the log; this is very efficient
 - Need very little systems development: we create the log anyway, and we have the REDO function anyway
 - Complications due to the need to "remove" updates of active transactions (they may later abort)


Types of Replication

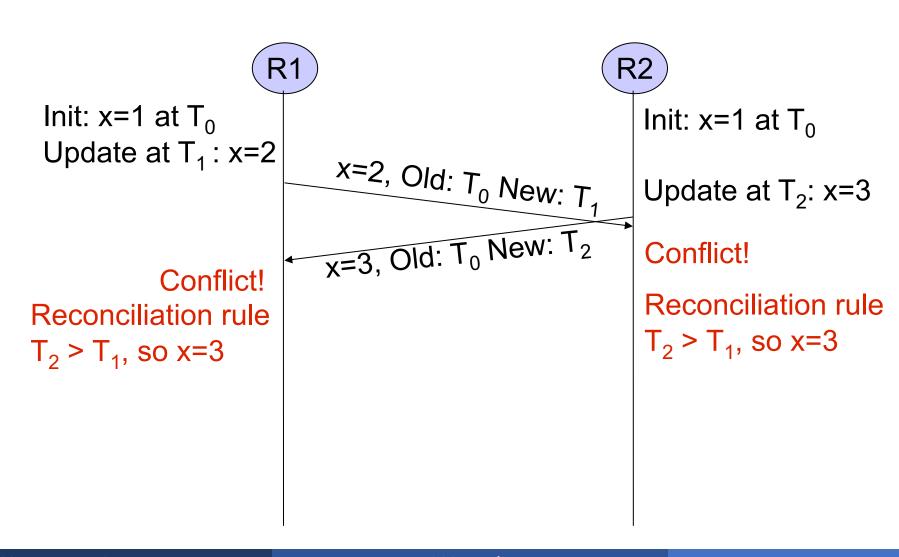
Synchronous

Asynchronous

- Also called multi-master
- Best scheme for availability
- Cannot guarantee one-copy serializability!



- Cannot guarantee one-copy serializability!
- Instead guarantee convergence
 - · Db state does not reflect any serial execution
 - But all replicas have the same state
- Called "Eventual Consistency" = if the DB stops operations, then eventually all copies are equal


- Cannot guarantee one-copy serializability!
- Instead guarantee convergence
 - Db state does not reflect any serial execution
 - But all replicas have the same state
- Called "Eventual Consistency" = if the DB stops operations, then eventually all copies are equal
- Detect conflicts and reconcile replica states

- Cannot guarantee one-copy serializability!
- Instead guarantee convergence
 - Db state does not reflect any serial execution
 - But all replicas have the same state
- Called "Eventual Consistency" = if the DB stops operations, then eventually all copies are equal
- Detect conflicts and reconcile replica states
- Reconciliation techniques:
 - Most recent timestamp wins
 - Site A wins over site B
 - But also: user-defined rules, or even manual

Detecting Conflicts Using Timestamps

Detecting Conflicts Using Timestamps

Conclusion

- Many innovations recently in
 - Big data analytics
 - Transaction processing at very large scale
- Many more problems remain open
- This course teaches foundations
- Innovate with an open mind!