
1March 9, 2022

Database System Internals

CSE 444 - Spring 2021

Two-Phase Commit (2PC)

CSE 444 - Spring 2021 2

References

§Ullman book: Section 20.5

§Ramakrishnan book: Chapter 22

March 9, 2022

We are Learning about Scaling DBMSs

§Scaling the execution of a query
• Parallel DBMS
• MapReduce
• Spark

§Scaling transactions
• Distributed transactions
• Replication
• Scaling with NoSQL and NewSQL

CSE 444 - Spring 2021 3

☛

March 9, 2022

Scaling Transactions Per Second

§OLTP: Transactions per second
“Online Transaction Processing”

§Amazon
§Facebook
§Twitter
§… your favorite Internet application…

§Goal is to increase transaction throughput

CSE 444 - Spring 2021 4March 9, 2022

How to Scale the DBMS?

§Can easily replicate the web servers and the
application servers

§We cannot so easily replicate the database
servers, because the database is unique

§We need to design ways to scale up the DBMS

CSE 444 - Spring 2021 5March 9, 2022

How to Scale?

6

Application

DB Server

Connection
(e.g., JDBC)

CSE 444 - Spring 2021March 9, 2022

How to Scale?

7

Application

DB Server

Connection
(e.g., JDBC)

CSE 444 - Spring 2021March 9, 2022

How to Scale?

8
Browser

DB Server

Connection
(e.g., JDBC)

HTTP/SSL

http
multiplex

CSE 444 - Spring 2021March 9, 2022

Web Server

How to Scale?

9
Browser

DB Server

Connection
(e.g., JDBC)

HTTP/SSL
…

http
multiplex

CSE 444 - Spring 2021March 9, 2022

Web Server Farm

How to Scale?

10
Browser

Connection
(e.g., JDBC)

HTTP/SSL
…

http
multiplex

…

CSE 444 - Spring 2021

Web Server Farm

March 9, 2022

Distributed DB

How to Scale?

11
Browser

Connection
(e.g., JDBC)

HTTP/SSL
…

http
multiplex

…

CSE 444 - Spring 2021

Web Server Farm

March 9, 2022

Distributed DB

Hard to ensure
ACID

Transaction Scaling Challenges
§Distribution

• There is a limit on transactions/sec on one server
• Need to partition the database across multiple servers
• If a transaction touches one machine, life is good!
• If a transaction touches multiple machines, ACID becomes

extremely expensive! Need two-phase commit

§Replication
• Replication can help to increase throughput and lower

latency
• Create multiple copies of each database partition
• Spread queries across these replicas
• Easy for reads but writes, once again, become expensive!

CSE 444 - Spring 2021 12March 9, 2022

CSE 444 - Spring 2021 13

Distributed Transactions

§Concurrency control

§Failure recovery
• Transaction must be committed at all sites or at none of

the sites!
• No matter what failures occur and when they occur
• Two-phase commit protocol (2PC)

March 9, 2022

CSE 444 - Spring 2021 14

Distributed Concurrency Control

§ In theory, different techniques are possible
• Pessimistic, optimistic, locking, timestamps

§ In practice, distributed two-phase locking
• Simultaneously hold locks at all sites involved

§Deadlock detection techniques
• Global wait-for graph (not very practical)
• Timeouts

§ If deadlock: abort least costly local transaction

March 9, 2022

CSE 444 - Spring 2021 15

Two-Phase Commit: Motivation

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) COMMIT

3) COMMIT4) Coordinator
crashes

But I already aborted!
(maybe due to crash)

What do we do now?

March 9, 2022

2PC Outline

§Phase 1: coordinator polls the subordinators
whether they want to commit or abort

§Phase 2: coordinator notifies all subordinators of
the decision commit or abort

March 9, 2022 CSE 444 - Spring 2021 16

CSE 444 - Spring 2021 17

2PC: Phase 1, Prepare

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

March 9, 2022

CSE 444 - Spring 2021 18

2PC: Phase 1, Prepare

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

March 9, 2022

CSE 444 - Spring 2021 19

2PC: Phase 1, Prepare

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

March 9, 2022

CSE 444 - Spring 2021 20

2PC: Phase 1, Prepare

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

March 9, 2022

CSE 444 - Spring 2021 21

2PC: Phase 1, Prepare

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

2) PREPARE

March 9, 2022

CSE 444 - Spring 2021 22

2PC: Phase 1, Prepare

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

2) PREPARE

3) Force-write: prepare

March 9, 2022

CSE 444 - Spring 2021 23

2PC: Phase 1, Prepare

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

2) PREPARE

3) Force-write: prepare

4) YES

March 9, 2022

CSE 444 - Spring 2021 24

2PC: Phase 1, Prepare

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

2) PREPARE

3) Force-write: prepare

3) Force-write: prepare

4) YES

March 9, 2022

CSE 444 - Spring 2021 25

2PC: Phase 1, Prepare

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

2) PREPARE

3) Force-write: prepare

3) Force-write: prepare

4) YES

4) YES

March 9, 2022

CSE 444 - Spring 2021 26

2PC: Phase 1, Prepare

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

2) PREPARE

3) Force-write: prepare

3) Force-write: prepare

3) Force-write: prepare

4) YES

4) YES

March 9, 2022

CSE 444 - Spring 2021 27

2PC: Phase 1, Prepare

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

2) PREPARE

3) Force-write: prepare

3) Force-write: prepare

3) Force-write: prepare

4) YES

4) YES
4) YES

March 9, 2022

28

2PC: Phase 2, Commit

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) Force-write:
commit

2) COMMIT

2) COMMIT

2) COMMIT

3) Force-write: commit

3) Force-write: commit

3) Force-write: commit

4) ACK

4) ACK
4) ACK

Transaction is
now committed! 5) Commit transaction

and “forget” it

5) Commit transaction
and “forget” it

5) Commit transaction and “forget” it

5) Write: end, then forget transaction

CSE 444 - Spring 2021March 9, 2022

29

2PC with Abort – Phase 1

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

2) PREPARE

3) Force-write: prepare

3) Force-write: abort

3) Force-write: abort

4) YES

4) No
4) NO

5) Abort transaction
and “forget” it

5) Abort transaction and “forget” it
CSE 444 - Spring 2021March 9, 2022

CSE 444 - Spring 2021 30

2PC with Abort – Phase 2

Coordinator
Subordinate 1

Subordinate 2

Subordinate 3

1) Force-write:
abort

2) ABORT

3) Force-write: abort
4) ACK

5) Write: end, then forget transaction

5) Abort transaction
and “forget” it

March 9, 2022

Recap

§Phase 1, Prepare: collect votes
• What if no response? Presume abort

§Phase 2, send decision commit/abort
• Wait for ack then write END and forget

March 9, 2022 CSE 444 - Spring 2021 31

CSE 444 - Spring 2021 32

Coordinator State Machine

§ All states involve
waiting for messages

COMMITTINGABORTING

INIT

Receive: Commit
Send: Prepare

R: No votes
FW: Abort
S: Abort

R: Yes votes
FW: Commit
S: Commit

END

COLLECTING

R: ACKS
W: End
Forget

R: ACKS
W: End
Forget

March 9, 2022

33

Subordinate State Machine

§ INIT and PREPARED
involve waiting

PREPARED

COMMITTINGABORTING

INIT
R: Prepare
FW: Prepare
S: Yes voteR: Prepare

FW: Abort
S: No vote

Abort
and forget

R: Abort
FW: Abort
S: Ack

Commit
and forget

R: Commit
FW: Commit
S: Ack

March 9, 2022 CSE 444 - Spring 2021

CSE 444 - Spring 2021 34

Handling Site Failures

What to do if there is no response

§Approach 1: no site failure detection
• Subordinate can only do retrying & blocking

§Approach 2: timeouts, since unilateral abort is ok
• Subordinate: init state: can timeout;

prepared state is still blocking
• Coordinator: collecting state can timeout

committing state is blocking

§ 2PC is a blocking protocol

March 9, 2022

Recovery
A subordinate fails. During recovery:

§ If the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

§ If the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

§ If no COMMIT/ABORT/PREPARE is found, then
presume ABORT (why is this OK?)

§ If the last entry is <PREPARE T> then it’s hard:

March 9, 2022 CSE 444 - Spring 2021 35

Recovery
A subordinate fails. During recovery:

§ If the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

§ If the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

§ If no COMMIT/ABORT/PREPARE is found, then
presume ABORT (why is this OK?)

§ If the last entry is <PREPARE T> then it’s hard:

March 9, 2022 CSE 444 - Spring 2021 36

Recovery
A subordinate fails. During recovery:

§ If the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

§ If the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

§ If no COMMIT/ABORT/PREPARE is found, then
presume ABORT (why is this OK?)

§ If the last entry is <PREPARE T> then it’s hard:

March 9, 2022 CSE 444 - Spring 2021 37

Recovery
A subordinate fails. During recovery:

§ If the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

§ If the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

§ If no COMMIT/ABORT/PREPARE is found, then
presume ABORT (why is this OK?)

§ If the last entry is <PREPARE T> then it’s hard:

March 9, 2022 CSE 444 - Spring 2021 38

Recovery
A subordinate fails. During recovery:

§ If the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

§ If the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

§ If no COMMIT/ABORT/PREPARE is found, then
presume ABORT (why is this OK?)

§ If the last entry is <PREPARE T> then it’s hard:

March 9, 2022 CSE 444 - Spring 2021 39

Recovery
A subordinate fails. During recovery:

§ If the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

§ If the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

§ If no COMMIT/ABORT/PREPARE is found, then
presume ABORT (why is this OK?)

§ If the last entry is <PREPARE T> then it’s hard:

March 9, 2022 CSE 444 - Spring 2021 40

Recovery
A subordinate fails. During recovery:

§ If the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

§ If the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

§ If no COMMIT/ABORT/PREPARE is found, then
presume ABORT (why is this OK?)

§ If the last entry is <PREPARE T> then it’s hard:
must re-contact coordinator to find out whether ABORT
or COMMIT

March 9, 2022 CSE 444 - Spring 2021 41

CSE 444 - Spring 2021 42

Observations

§ Coordinator keeps transaction in transactions table until it
receives all acks

• To ensure subordinates know to commit or abort
• So acks enable coordinator to “forget” about transaction

§ After crash, if recovery process finds no log records for a
transaction, the transaction is presumed to have aborted

§ Read-only subtransactions: no changes ever need to be
undone nor redone

March 9, 2022

CSE 444 - Spring 2021 43

Presumed Abort Protocol

§ Optimization goals
• Fewer messages and fewer force-writes

§ Principle
• If nothing known about a transaction, assume ABORT

§ Aborting transactions need no force-writing

§ Avoid log records for read-only transactions
• Reply with a READ vote instead of YES vote

March 9, 2022

CSE 444 - Spring 2021March 9, 2022 44

2PC State Machines (repeat)

COMMITTINGABORTING

INIT

Receive: Commit
Send: Prepare

R: No votes
FW: Abort
S: Abort

R: Yes votes
FW: Commit
S: Commit

END

COLLECTING

R: ACKS
W: End

R: ACKS
W: End

PREPARED

COMMITTINGABORTING

INIT

R: Prepare
FW: Prepare
S: Yes vote

R: Prepare
FW: Abort
S: No vote

Abort
and forget

R: Abort
FW: Abort
S: Ack

R: Commit
FW: Commit
S: Ack

Commit
and forget

CSE 444 - Spring 2021March 9, 2022 45

Presumed Abort State Machines

COMMITTING

INIT

Receive: Commit
Send: Prepare

R: No votes
W: Abort
S: Abort

R: Yes votes
FW: Commit
S: Commit

END

COLLECTING

R: ACKS
W: End

PREPARED

COMMITTINGABORTING

INIT

R: Prepare
FW: Prepare
S: Yes vote

R: Prepare
W: Abort
S: No vote

Abort
and forget

R: Abort
W: Abort

R: Commit
FW: Commit
S: Ack

Commit
and forget

CSE 444 - Spring 2021 46

Summary: Two-Phase Commit Protocol
§ One coordinator and many subordinates

• Phase 1: prepare
• All subordinates must flush tail of write-ahead log to disk before ack
• Must ensure that if coordinator decides to commit, they can commit!

• Phase 2: commit or abort
• Log records for 2PC include transaction and coordinator ids
• Coordinator also logs ids of all subordinates

§ Principle
• Whenever a process makes a decision: vote yes/no or commit/abort
• Or whenever a subordinate wants to respond to a message: ack
• First force-write a log record (to make sure it survives a failure)
• Only then send message about decision

§ “Forget” completed transactions at the very end
• Once synchronized, or transaction has committed or aborted, all

nodes can stop logging any more information about that transaction

March 9, 2022

Discussion

§Data replication: simple case of distributed TXN:
ensure that all replicas performed the update

§But 2PC is slow: waiting for the slowest link
§Major shortcoming: need reliable coordinator
§Paxos: gives up the coordinator, even slower…

§NoSQL: give up strong consistency (i.e. ACID)
§Mostly for data replication:“eventual consistency”
§Programming nightmare: how to write a TXN?

March 9, 2022 CSE 444 - Spring 2021 47

