sessionid
NumberOfSession
4 Date
#K1 | experimentin
Setup P ——
t T 7
lation Trial ",
dividual Setuphame
X {idald SetupType A
ey — B
NumberOfTrial
A%
FK3 | SubjectiD | -
Start I e
Duration .
NMarker RIS Worker 3 Worker 3
SetupMarker 2 A\ (R Worker 3 rker forker
Record edMovieFile N et = Ky &0 17
e ' Mensaw,yh% - szl Traditional el i
Q dben Y Aerys ‘ II . (a) Traditional parallel query plan
= Tywin
T y X . "II N pis
Trial_has_Timecourse [riat_tas_rrajectory 5 ’ —— "l p——rr—
saiime. Renlyims T —Eia -!
AAX . e | E—
i ; & e fTyrion S S — 7
it [ | |2 e Ao == S Hpercune
i Cersél e > Shuffle
¢ ‘ . Podrick H
Uoras, KeviShae F
Timecourse [ ratectory ~ 2
Walton JoffreMargaerygn
% | Timecoursein P | Tesjectoryin s MYIcSHE Gresor
BTN OlennaSandl (varie
Frequency Frequency « Bronn
SegmentiD SegmentiO . Melyg
KindOfata KindOtData Gendry iyn
MarkerD

gl ube shuffle-based parallel g

- o

Database System Internals

Two-Phase Commit (2PC

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

CSE 444 - Spring 2021




References

= Ullman book: Section 20.5

» Ramakrishnan book: Chapter 22

March 9, 2022 CSE 444 - Spring 2021



We are Learning about Scaling DBMSs

» Scaling the execution of a query
 Parallel DBMS
 MapReduce
« Spark

» Scaling transactions
* Distributed transactions
* Replication
 Scaling with NoSQL and NewSQL

|

March 9, 2022 CSE 444 - Spring 2021



Scaling Transactions Per Second

*OLTP: Transactions per second
“Online Transaction Processing”

* Amazon

= Facebook

= Twitter

= ... your favorite Internet application...

» Goal is to increase transaction throughput

March 9, 2022 CSE 444 - Spring 2021



How to Scale the DBMS?

» Can easily replicate the web servers and the
application servers

* \We cannot so easily replicate the database
servers, because the database is unique

* \We need to design ways to scale up the DBMS

March 9, 2022 CSE 444 - Spring 2021



How to Scale?

March 9, 2022

Connection
(e.g., JDBC)

CSE 444 - Spring 2021




How to Scale?

March 9, 2022

Application

Connection
(e.g., JDBC)

CSE 444 - Spring 2021




How to Scale?

DB Server Web Server
__—| |Connection ) multiplex
] (e.g., JDBC) —
HTTP/SSL
= EEEE

Browser
March 9, 2022 CSE 444 - Spring 2021




How to Scale?

DB Server

Connection I

(e.g., JDBC)

March 9, 2022

\

ﬂﬂ

http

T EEEE

__/

Web Server Farm

multiplex

CSE 444 - Spring 2021

HTTP/SSL

Browser



How to Scale?

Distributed DB

, | | | | ‘
=i VI
I [ o= I | — |
I |& | I = | http
l | ] &= | Connection | multiplex
(e.g., JDBC) [
[ [ [ I HTTP/SSL
1 1T |l L]
1T |
[ = -_— = 7
| Web Server Farm

Browser
March 9, 2022 CSE 444 - Spring 2021




How to Scale?

Distributed DB

, | | _‘
=11 | |
o= Hiy
| =) | =7
I U | I == | http
I | ] &= | Connection | muftiplex
(e.g., JDBC) [
I I HTTP/SSL
Hard to ensure | | [ I
ACID \F 1|
I
| =1
I AE— 4
| Web Server Farm

Browser

March 9, 2022 CSE 444 - Spring 2021 11



Transaction Scaling Challenges

= Distribution
* There is a limit on transactions/sec on one server
* Need to partition the database across multiple servers
* |f a transaction touches one machine, life is good!

* |f a transaction touches multiple machines, ACID becomes
extremely expensive! Need two-phase commit

* Replication
* Replication can help to increase throughput and lower
latency
« Create multiple copies of each database partition
« Spread queries across these replicas
« Easy for reads but writes, once again, become expensive!

March 9, 2022 CSE 444 - Spring 2021 12




Distributed Transactions

= Concurrency control

= Failure recovery

* Transaction must be committed at all sites or at none of
the sites!

« No matter what failures occur and when they occur
« Two-phase commit protocol (2PC)

March 9, 2022 CSE 444 - Spring 2021



Distributed Concurrency Control

= In theory, different techniques are possible

» Pessimistic, optimistic, locking, timestamps

* In practice, distributed two-phase locking

« Simultaneously hold locks at all sites involved

» Deadlock detection techniques
 Global wait-for graph (not very practical)

 Timeouts

» |[f deadlock: abort least costly local transaction

March 9, 2022 CSE 444 - Spring 2021



Two-Phase Commit: Motivation

Coordinator

Subordinate 1
1) User decides 2) (EI\/II\/IIT u i

to commit

4) Coordinator 3) COMMIT

crashes
What do we do now? Subordinate 2
But | already aborted!
Q (maybe due to crash)

Subordinate 3

March 9, 2022 CSE 444 - Spring 2021




2PC Outline

* Phase 1: coordinator polls the subordinators
whether they want to commit or abort

= Phase 2: coordinator notifies all subordinators of
the decision commit or abort

March 9, 2022 CSE 444 - Spring 2021



2PC: Phase 1, Prepare

Coordinator
Q Subordinate 1

-

Q Subordinate 2

-

Subordinate 3

March 9, 2022 CSE 444 - Spring 2021 17




2PC: Phase 1, Prepare

Coordinator

1) User decides@ Q

to commit

Subordinate 1

Q Subordinate 2

-

Subordinate 3

March 9, 2022 CSE 444 - Spring 2021




2PC: Phase 1, Prepare

Coordinator
_ 2) PREPARE Subordinate 1
1) User demdes@ T >
to commit Q

@ Subordinate 2

-

Subordinate 3

March 9, 2022 CSE 444 - Spring 2021




2PC: Phase 1, Prepare

Coordinator
_ 2) PREPARE Subordinate 1
1) User decides T >
to commit Q
2) PREPARE

Subordinate 2

-

Subordinate 3

March 9, 2022 CSE 444 - Spring 2021 20




2PC: Phase 1, Prepare

Coordinator
_ 2) PREPARE Subordinate 1
1) User decides T >
to commit Q

2) PREPARE

) PREPARE Subordinate 2

Subordinate 3

March 9, 2022 CSE 444 - Spring 2021




2PC: Phase 1, Prepare

Coordinator
_ 2) PREPARE Subordinate 1
1) User decides T >
to commit Q

3) Force-write: prepare
2) PREPARE

) PREPARE Subordinate 2

Subordinate 3

March 9, 2022 CSE 444 - Spring 2021 22




2PC: Phase 1, Prepare

Coordinator
_ 2) PREPARE Subordinate 1
1) User decides - N~ -
4) YES Q

to commit
3) Force-write: prepare

2) PREPARE

) PREPARE Subordinate 2

Subordinate 3

March 9, 2022 CSE 444 - Spring 2021 23




2PC: Phase 1, Prepare

Coordinator
_ 2) PREPARE Subordinate 1
1) User decides(| < T~ >
4) YES Q

to commit
3) Force-write: prepare

2) PREPARE

) PREPARE Subordinate 2

3) Force-write: prepare

Subordinate 3

March 9, 2022 CSE 444 - Spring 2021




2PC: Phase 1, Prepare

Coordinator
_ 2) PREPARE Subordinate 1
1) User decides(| < T~ >
to commit 4) YES N— Q

3) Force-write: prepare
2) PREPARE

4) YES
) PREPARE% Subordinate 2

3) Force-write: prepare

Subordinate 3

March 9, 2022 CSE 444 - Spring 2021 25




2PC: Phase 1, Prepare

Coordinator
_ 2) PREPARE Subordinate 1
1) User decides(| < T~ >
to commit 4) YES N— O

3) Force-write: prepare
2) PREPARE

4) YES
) PREPARE% Subordinate 2

3) Force-write: prepare

Subordinate 3
3) Force-write: prepare

March 9, 2022 CSE 444 - Spring 2021 26




2PC: Phase 1, Prepare

Coordinator
_ 2) PREPARE Subordinate 1
1) User decide San T~ >
to commit 4) YES “— O

3) Force-write: prepare
2) PREPARE

4) YES
4) YES %
) PREPARE Subordinate 2

3) Force-write: prepare

Subordinate 3
3) Force-write: prepare

March 9, 2022 CSE 444 - Spring 2021




2PC: Phase 2, Commit

5) Write: end, then forget transaction

Coordinator
. 2) COMMIT Subordinate 1
1) Force-write: - N~ -
commit 4) ACK ™ — -

Transaction is 2) COMMIT 3) Force-write: commit
now committed! 5) Commit transaction

4) ACK and “forget” it

4) ACK %
) COMMIT Subordinate 2

3) Force-write: commit
J 5) Commit transaction

Subordinate 3 and “forget” it

3) Force-write: commit
5) Commit transaction and “forget” it

CSE 444 - Spring 2021 28

March 9, 2022




2PC with Abort — Phase 1

Coordinator

. 2) PREPARE Subordinate 1
1) User decide San T~ >
to commit 4) YES “— O

) PREPARE 3) Force-write: prepare

) PREPARE Subordinate 2

3) Force-write: abort
5) Abort transaction

Subordinate 3 and “forget” it
3) Force-write: abort
5) Abort transaction and “forget” it

CSE 444 - Spring 2021

March 9, 2022

29



2PC with Abort — Phase 2

5) Write: end, then forget transaction

Coordinator
1) Force-write: - 2) AEORT Subordinate 1
_ : R
abort 4) ACR\ O

3) Force-write: abort
5) Abort transaction
and “forget” it

@ Subordinate 2

-

Subordinate 3

March 9, 2022 ) 30




» Phase 1, Prepare: collect votes
* What if no response? Presume abort

» Phase 2, send decision commit/abort
« Wait for ack then write END and forget

March 9, 2022 CSE 444 - Spring 2021



Coordinator State Machine

= All states involve
waliting for messages

March 9, 2022

INIT

Receive: Commit
Send: Prepare

COLLECTING

R: No votes R: Yes votes

FW: Abort FW: Commit

S: Abort S: Commit
N

ABORTING COMMITTING

RIACKS " RACKS

W: End W: End
Forget END Forget
32



Subordinate State Machine

= INIT and PREPARED
iInvolve waiting

R: Prepare
FW: Prepare

R: Prepare S: Yes vote

FW: Abort
S: No vote PREPARED
R: Commit
FW: Commit
S: Ack

R: Abort
FW: Abort
S: Ack

ABORTING

Abort Commit
and forget and forget

March 9, 2022 CSE 444 - Spring 2021 33




Handling Site Failures

What to do if there is no response

= Approach 1: no site failure detection

« Subordinate can only do retrying & blocking

» Approach 2: timeouts, since unilateral abort is ok

e Subordinate: init state: can timeout;
prepared state is still blocking

« Coordinator: collecting state can timeout
committing state is blocking

= 2PC is a blocking protocol

March 9, 2022 CSE 444 - Spring 2021 34




Recovery

A subordinate fails. During recovery:

= |f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

March 9, 2022 CSE 444 - Spring 2021 35




Recovery

A subordinate fails. During recovery:

= |f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

= |f the last entry in the log is <ABORT T>

March 9, 2022 CSE 444 - Spring 2021 36




Recovery

A subordinate fails. During recovery:

= |f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

= |f the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

March 9, 2022 CSE 444 - Spring 2021



Recovery

A subordinate fails. During recovery:

= |[f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

= |f the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

" If no COMMIT/ABORT/PREPARE is found

March 9, 2022 CSE 444 - Spring 2021 38




Recovery

A subordinate fails. During recovery:

= |[f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

= |f the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

* [f no COMMIT/ABORT/PREPARE is found, then
presume ABORT (why is this OK?)

March 9, 2022 CSE 444 - Spring 2021 39




Recovery

A subordinate fails. During recovery:

= |[f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

= |f the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

* [f no COMMIT/ABORT/PREPARE is found, then
presume ABORT (why is this OK?)

= |f the last entry is <PREPARE T> then it's hard:

March 9, 2022 CSE 444 - Spring 2021 40




Recovery

A subordinate fails. During recovery:

= |[f the last entry in the log is <COMMIT T> then the
transaction is committed: REDO

= |f the last entry in the log is <ABORT T> then the
transaction is aborted: UNDO

* [f no COMMIT/ABORT/PREPARE is found, then
presume ABORT (why is this OK?)

= |[f the last entry is <PREPARE T> then it's hard:
must re-contact coordinator to find out whether ABORT
or COMMIT

March 9, 2022 CSE 444 - Spring 2021 41




» Coordinator keeps transaction in transactions table until it
receives all acks
* To ensure subordinates know to commit or abort
« So acks enable coordinator to “forget” about transaction

= After crash, if recovery process finds no log records for a
transaction, the transaction is presumed to have aborted

» Read-only subtransactions: no changes ever need to be
undone nor redone

March 9, 2022 CSE 444 - Spring 2021




Presumed Abort Protocol

» Optimization goals
« Fewer messages and fewer force-writes

* Principle
+ If nothing known about a transaction, assume ABORT

» Aborting transactions need no force-writing

» Avoid log records for read-only transactions
* Reply with a READ vote instead of YES vote

March 9, 2022 CSE 444 - Spring 2021




2PC State Machines (repeat)

INIT
lReceive: Commit
Send: Prepare
COLLECTING
R: No votes R: Yes votes
FW: Abort FW: Commit
S: Abort S: Commit
ABORTING COMMITTING
RIACKS .~ R:ACKS
W: End END W: End

R: Prepare
FW: Abort
S: No vote

R: Abort
FW: Abort
S: Ack

Abort
and forget

PREPARED

R: Prepare
FW: Prepare
S: Yes vote

R: Commit
FW: Commit
S: Ack

ABORTING w

Commit
and forget



Presumed Abort State

Machines

INIT

lReceive: Commit

Send: Prepare
COLLECTING

R: Yes votes

R: No votes FW: Commit
W: Abort S: Commit
S: Abort
COMMITTING
/ R: ACKS
ND W: End

R: Prepare
W: Abort
S: No vote

R: Prepare
FW: Prepare
S: Yes vote

PREPARED
R: Commit

R: Abort FW: Commit
W: Abor S Ack

ABORTING w

Abort Commit
and forget and forget




Summary: Two-Phase Commit Protocol

* One coordinator and many subordinates

 Phase 1: prepare
 All subordinates must flush tail of write-ahead log to disk before ack
* Must ensure that if coordinator decides to commit, they can commit!
* Phase 2: commit or abort
* Log records for 2PC include transaction and coordinator ids
« Coordinator also logs ids of all subordinates

= Principle
 Whenever a process makes a decision: vote yes/no or commit/abort
« Or whenever a subordinate wants to respond to a message: ack
 First force-write a log record (to make sure it survives a failure)
« Only then send message about decision

= “Forget” completed transactions at the very end

* Once synchronized, or transaction has committed or aborted, all
nodes can stop logging any more information about that transaction

March 9, 2022 CSE 444 - Spring 2021




Discussion

» Data replication: simple case of distributed TXN:
ensure that all replicas performed the update

» But 2PC is slow: waiting for the slowest link
» Major shortcoming: need reliable coordinator
» Paxos: gives up the coordinator, even slower...

= NoSQL: give up strong consistency (i.e. ACID)
» Mostly for data replication:“eventual consistency”
» Programming nightmare: how to write a TXN?

March 9, 2022 CSE 444 - Spring 2021 47




