Sessionld

NumberOfsession

Date
X1 [Exparimentin

f setwp
7 [setupio
lation Trial
dividual Setuphiame
n
a2 SetupType
#1 |Sessionid
NumberOfTrial
2 [setupio
#s | Subjectin
st
ouration
NMarker
SetupMarker
Record edMovieFile
Note
Trial_has_Timecoursa [riat_tas_rrajectory
FKL | TrialiD FKL | TeiallD
#xz | rimecoursein #i2 | Trajectoryio

v

v

KindOfData

N

Timecourse [ratectory

¢ | Timecoursein o | Tesiectoryi
Frequency frequency
SegmentiD segmentid

KindotData
MarkerdD
NFrames

gl

MelisandrTheon

B A

Gendry

Walton

Sandor

\‘\m

X S
insaime,, RNty
AN Ly ivrion

A\ ay
Cerséi
Lora:

s
JoffreMargaeryan
Myrcelia Gregor

Meyn
iiyn

Podrick

KevzShae

Bronn

|

m.L"

mml

NS

B
i

T~

N\
WE

N

| "m

Sianiom 4

Worker 3

Worker 3 Worker 3

(a) Traditional parallel query plan

— 4

HyperCube
Shuffle

gl ube shuffle-based parallel g

Database System Internals

Spark

Paul G. Allen School of Computer Science and Engineering

University of Washington, Seattle

CSE 444 - Spring 2021

References

» Spark is an open source system from Berkeley

= Resilient Distributed Datasets: A Fault-Tolerant

Abstraction for In-Memory Cluster Computing.
Matei Zaharia et. al. NSDI'12.

March 7, 2022 CSE 444 - Spring 2021

» Goal: Better use distributed memory in a cluster

» Observation:
* Modern data analytics involves iterations
» Users also want to do interactive data mining

* In both cases, want to keep intermediate data in
memory and reuse it

* MapReduce does not support this scenario well
« Requires writing data to disk between jobs

March 7, 2022 CSE 444 - Spring 2021

Approach

= New abstraction: Resilient Distributed Datasets

* RDD properties
 Parallel data structure
« Can be persisted in memory
 Fault-tolerant
« Users can manipulate RDDs with rich set of operators

March 7, 2022 CSE 444 - Spring 2021

RDD Details

= An RDD is a partitioned collection of records
« RDD’s are typed: RDDJInt] is an RDD of integers

= An RDD is read only

* This means no updates to individual records
 This is to contrast with in-memory key-value stores

» To create an RDD
« Execute a deterministic operation on another RDD
* Or on data in stable storage
« Example operations: map, filter, and join

March 7, 2022 CSE 444 - Spring 2021

RDD Materialization

= Users control persistence and partitioning

= Persistence
« Should we materialize this RDD in memory?

= Partitioning
« Users can specify key for partitioning an RDD

March 7, 2022 CSE 444 - Spring 2021

Let’s think about it...

» S0 RDD is a lot like a view in a parallel engine

* A view that can be materialized in memory

* A materialized view that can be physically tuned
* Tuning: How to partition for maximum performance

March 7, 2022 CSE 444 - Spring 2021

Spark Programming Interface

* RDDs implemented in new Spark system

» Spark exposes RDDs though a language-
integrated API similar to DryadLINQ but in Scala

= | ater Spark was extended with SQL

March 7, 2022 CSE 444 - Spring 2021

Why Scala?

From Matei Zaharia (Spark lead author): “When we started Spark, we
wanted it to have a concise API for users, which Scala did well. At the
same time, we wanted it to be fast (to work on large datasets), so many
scripting languages didn't fit the bill. Scala can be quite fast because it's
statically typed and it compiles in a known way to the JVM. Finally,
running on the JVM also let us call into other Java-based big data
systems, such as Cassandra, HDFS and HBase.

Since we started, we've also added APls in Java (which became much
nicer with Java 8) and Python”

https://www.quora.com/Why-is-Apache-Spark-implemented-in-Scala

March 7, 2022 CSE 444 - Spring 2021

Querying/Processing RDDs

» Programmer first defines RDDs through
transformations on data in stable storage
* Map
* Filter

» Then, can use RDDs in actions
 Action returns a value to app or exports to storage
« Count (counts elements in dataset)
 Collect (returns elements themselves)
« Save (output to stable storage)

March 7, 2022 CSE 444 - Spring 2021

Example (from paper)

Search logs stored in HDFS

lines = spark.textFile(*hdfs://...”)

errors = lines.filter(_.startsWith("Error”))
errors.persist()

errors.collect()
errors.filter(_.contains("MySQL")).count()

March 7, 2022 CSE 444 - Spring 2021

More on Programming Interface

» L arge set of pre-defined transformations:

« Map, filter, flatMap, sample, groupByKey, reduceByKey,
union, join, cogroup, crossProduct, ...

» Small set of pre-defined actions:
« Count, collect, reduce, lookup, and save

» Programming Interface includes iterations

March 7, 2022 CSE 444 - Spring 2021

More Complex Example

val points = spark.textFile(...)
.map(parsePoint) .persist()

var w = // random initial vector
for (1 <- 1 to ITERATIONS) {

val gradient = points.map{ p =>

p.x * (1/(l+exp(-p.y*(w dot p.x)))-1)*p.y
}.reduce((a,b) => a+b)
w -= gradient

}

[From Zaharia12]

March 7, 2022 CSE 444 - Spring 2021

Spark Runtime

1) Input data in HDFS
Or other Hadoop
input source

2) User writes
driver program

3) System ships code
to workers

Figure 2: Spark runtime. The user’s driver program launches
multiple workers, which read data blocks from a distributed file

system and can persist computed RDD partitions in memory.

[From Zaharia12]

March 7, 2022 CSE 444 - Spring 2021

Query Execution Details

= _azy evaluation
« RDDs are not evaluated until an action is called

" [In memory caching
« Spark workers are long-lived processes
 RDDs can be materialized in memory in workers
» Base data is not cached in memory

March 7, 2022 CSE 444 - Spring 2021

Key Challenge

» How to provide fault-tolerance efficiently?

March 7, 2022 CSE 444 - Spring 2021

Fault-Tolerance Through Lineage

Represent RDD with 5 pieces of information
= A set of partitions

» A set of dependencies on parent partitions
* Distinguishes between narrow (one-to-one)
« And wide dependencies (one-to-many)

* Function to compute dataset based on parent

» Metadata about partitioning scheme and data
placement

RDD = Distributed relation + lineage

March 7, 2022 CSE 444 - Spring 2021

More Details on Execution

Scheduler builds a DAG of
stages based on lineage
graph of desired RDD.

Pipelined execution
within stages

Synchronization barrier
with materialization
before shuffles

If a task fails, re-run it
Can checkpoint RDDs to disk

Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

March 7, 2022 CSE 444 - Spring 2021

Latest Advances

Spark MLlIib

Streamingll (machine
learning)

Apache Spark

Image from: http://spark.apache.org/

March 7, 2022 CSE 444 - Spring 2021

Where to Go From Here

» Read about the latest Hadoop developments
 YARN

» Read more about Spark

= _earn about GraphLab/Turi

» _earn about Impala, Flink, Myria, etc.

" ... many other big data systems and tools...

* Also good to know latest cloud offering: Google,
Microsoft, and Amazon

March 7, 2022 CSE 444 - Spring 2021

