
1May 20, 2020

Database System Internals

CSE 444 - Spring 2020

Intro to Parallel DBMSs

Scaling Single Query Response Time

§OLAP: Query response time
“Online Analytical Processing”

§ Entire parallel system answers one query

§Goal is to improve query runtime

§Use case is analysis of massive datasets

CSE 444 - Spring 2020 2May 20, 2020

Big Data

Volume alone is not an issue

§ Relational databases do parallelize easily
• Data partitioning
• Parallel query processing

§ SQL is embarrassingly parallel
• We will learn how to do this!

May 20, 2020 CSE 444 - Spring 2020 3

Big Data

New workloads are an issue

§ Big volumes, small analytics
• OLAP queries: join + group-by + aggregate
• Can be handled by today’s RDBMSs

§ Big volumes, big analytics
• More complex Machine Learning
• E.g. click prediction, topic modeling, SVM, k-means
• Active area of research

CSE 444 - Spring 2020 4May 20, 2020

Building Our Parallel DBMS

CSE 444 - Spring 2020 5May 20, 2020

Data model? Relational

Scaleup goal? OLAP

Building Our Parallel DBMS

CSE 444 - Spring 2020 6May 20, 2020

Data model? Relational

Scaleup goal? OLAP

Architecture?

Shared-Memory Architecture

CSE 444 - Spring 2020 7

Global Memory

Interconnection Network
(Motherboard)

D D D

P P P

§ Shared main memory and
disks

§ Your laptop or desktop
uses this architecture

§ Expensive to scale
§ Easiest to implement on

May 20, 2020

Shared-Disk Architecture

May 20, 2020 CSE 444 - Spring 2020 8

Interconnection Network
(SAN + SCSI)

D D D

P P P

M M M

§ Only shared disks
§ No contention for

memory and high
availability

§ Typically 1-10 machines

Shared-Nothing Architecture
§ Uses cheap, commodity

hardware
§ No contention for

memory and high
availability

§ Theoretically can scale
infinitely

§ Hardest to implement on

CSE 444 - Spring 2020 9

Interconnection Network
(TCP)

D D D

P P P

M M M

May 20, 2020

Building Our Parallel DBMS

CSE 444 - Spring 2020 10May 20, 2020

Data model? Relational

Scaleup goal? OLAP

Architecture? Shared-Nothing

Shared-Nothing Execution Basics

CSE 444 - Spring 2020 11May 20, 2020

§Multiple DBMS instances (= processes) also
called “nodes” execute on machines in a cluster

• One node plays role of the coordinator
• Other nodes play role of workers

§Workers execute queries
• Typically all workers execute the same plan
• Workers can execute multiple queries at the same time

Node 1 Node 2 Node 3

Shared-Nothing Database

We will assume a system that consists of multiple
commodity machines on a common network

New problem: Where does the data go?

The answer will influence our execution techniques

CSE 444 - Spring 2020 12May 20, 2020

Node 1 Node 2 Node 3

Option 1: Unpartitioned Table

§ Entire table on just one node in the system

§Will bottleneck any query we need to run in
parallel

§We choose partitioning scheme to divide rows
among machines

CSE 444 - Spring 2020 13May 20, 2020

Option 2: Block Partitioning
Tuples are horizontally (row) partitioned by raw size
with no ordering considered

CSE 444 - Spring 2020 14

… … …

B(R) = K
B(R2) = K/N

B(RN) = K/N

B(R1) = K/N

N nodes

May 20, 2020

Option 3: Range Partitioning

Node contains tuples in chosen attribute ranges

CSE 444 - Spring 2020 15

A

… …

A

A

A

…

R2, v1 < A <= v2

RN, vN < A < inf

R1, -inf < A <= v1

N nodes

May 20, 2020

Option 4: Hash Partitioning

Node contains tuples with chosen attribute hashes

CSE 444 - Spring 2020 16

A

… …

A

A

A

…

R2, 2 = h(A)%N

RN, 0 = h(A)%N

R1, 1 = h(A)%N

N nodes

h(A)

May 20, 2020

Skew: The Justin Bieber Effect

§Hashing data to nodes is very good when the
attribute chosen better approximates a uniform
distribution

§Keep in mind: Certain nodes will become
bottlenecks if a poorly chosen attribute is hashed

CSE 444 - Spring 2020 17May 20, 2020

Parallel Selection

CSE 444 - Spring 2020 18

Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

SELECT *
FROM R
WHERE A = 2

May 20, 2020

Parallel Selection

CSE 444 - Spring 2020 19

Node 1 Node 2 Node 3

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

SELECT *
FROM R
WHERE A = 2

𝜎"#$ 𝜎"#$ 𝜎"#$
A …
2 …

A …
2 …

A …

May 20, 2020

Implicit Union

CSE 444 - Spring 2020 20

Parallel query plans implicitly union at the end

Output

Node 1 Node 2 Node 3

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

𝜎"#$ 𝜎"#$ 𝜎"#$

May 20, 2020

Parallel Selection

Compute 𝜎A=v(R), or 𝜎v1<A<v2(R)

§On a conventional database: cost = B(R)

Q: What is the cost on each node for a database
with N nodes ?

A:

21CSE 444 - Spring 2020May 20, 2020

Parallel Selection

Compute 𝜎A=v(R), or 𝜎v1<A<v2(R)

§On a conventional database: cost = B(R)

Q: What is the cost on each node for a database
with N nodes ?

A: B(R) / N block reads on each node

22CSE 444 - Spring 2020May 20, 2020

Partitioned Aggregation

CSE 444 - Spring 2020 23

Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

𝛾&." 𝛾&."𝛾&."

SELECT R.A,sum(…)
FROM R
GROUP BY R.A

May 20, 2020

Partitioned Aggregation

CSE 444 - Spring 2020 24

Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

𝛾&." 𝛾&."𝛾&."A …
1 …
1 …

A …
2 …
2 …

A …
3 …
3 …

May 20, 2020

SELECT R.A,sum(…)
FROM R
GROUP BY R.A

Partitioned Aggregation

1. Hash shuffle tuples

CSE 444 - Spring 2020 25

Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

𝛾&." 𝛾&."𝛾&."A …
1 …
1 …

A …
2 …
2 …

A …
3 …
3 …

May 20, 2020

SELECT R.A,sum(…)
FROM R
GROUP BY R.A

Partitioned Aggregation

1. Hash shuffle tuples

CSE 444 - Spring 2020 26

Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

𝛾&." 𝛾&."𝛾&."A …
1 …
1 …

A …
2 …
2 …

A …
3 …
3 …

May 20, 2020

SELECT R.A,sum(…)
FROM R
GROUP BY R.A

Partitioned Aggregation

1. Hash shuffle tuples
2. Local aggregation

CSE 444 - Spring 2020 27

Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

𝛾&." 𝛾&."𝛾&."A …
1 …
1 …

A …
2 …
2 …

A …
3 …
3 …

May 20, 2020

SELECT R.A,sum(…)
FROM R
GROUP BY R.A

Partition Aggregation: Summary

Select A, sum(B) from R group by A

§Case 1: R is partitioned on A
• Do the group-by locally; done.

§Case 2: R is partitioned on something else
• Naïve: reshuffle on A, then do as in case 1

• Better: do a local group-by-sum (reduces size),
then reshuffle on A and do a second group-by

𝛾",)*+ , 𝑅. ∪ 𝑅$ ∪ ⋯∪ 𝑅1
= 𝛾",)*+ , (𝛾",)*+ , 𝑅. ∪ ⋯∪ 𝛾",)*+ , 𝑅1)

May 20, 2020 CSE 444 - Spring 2020 28

Partition Aggregation: Summary

Select A, sum(B) from R group by A

§Case 1: R is partitioned on A
• Do the group-by locally; done.

§Case 2: R is partitioned on something else
• Naïve: reshuffle on A, then do as in case 1

• Better: do a local group-by-sum (reduces size),
then reshuffle on A and do a second group-by

𝛾",)*+ , 𝑅. ∪ 𝑅$ ∪ ⋯∪ 𝑅1
= 𝛾",)*+ , (𝛾",)*+ , 𝑅. ∪ ⋯∪ 𝛾",)*+ , 𝑅1)

May 20, 2020 CSE 444 - Spring 2020 29

Partition Aggregation: Summary

Select A, sum(B) from R group by A

§Case 1: R is partitioned on A
• Do the group-by locally; done.

§Case 2: R is partitioned on something else
• Naïve: reshuffle on A, then do as in case 1

• Better: do a local group-by-sum (reduces size),
then reshuffle on A and do a second group-by

𝛾",)*+ , 𝑅. ∪ 𝑅$ ∪ ⋯∪ 𝑅1
= 𝛾",)*+ , (𝛾",)*+ , 𝑅. ∪ ⋯∪ 𝛾",)*+ , 𝑅1)

May 20, 2020 CSE 444 - Spring 2020 30

Partition Aggregation: Summary

Select A, sum(B) from R group by A

§Case 1: R is partitioned on A
• Do the group-by locally; done.

§Case 2: R is partitioned on something else
• Naïve: reshuffle on A, then do as in case 1

• Better: do a local group-by-sum (reduces size),
then reshuffle on A and do a second group-by

𝛾",)*+ , 𝑅. ∪ 𝑅$ ∪ ⋯∪ 𝑅1
= 𝛾",)*+ , (𝛾",)*+ , 𝑅. ∪ ⋯∪ 𝛾",)*+ , 𝑅1)

May 20, 2020 CSE 444 - Spring 2020 31

Partition Aggregation: Summary

Select A, sum(B) from R group by A

§Case 1: R is partitioned on A
• Do the group-by locally; done.

§Case 2: R is partitioned on something else
• Naïve: reshuffle on A, then do as in case 1

• Better: do a local group-by-sum (reduces size),
then reshuffle on A and do a second group-by

𝛾",)*+ , 𝑅. ∪ 𝑅$ ∪ ⋯∪ 𝑅1
= 𝛾",)*+ , (𝛾",)*+ , 𝑅. ∪ ⋯∪ 𝛾",)*+ , 𝑅1)

May 20, 2020 CSE 444 - Spring 2020 32

“Combiners”
in MapReduce

Basic Parallel GroupBy

Can we do partial aggregate before reshuffle?
§ Sum?
§Count?
§Avg?
§Max?
§Median?

33CSE 444 - Spring 2020May 20, 2020

Basic Parallel GroupBy

Can we do partial aggregate before reshuffle?
§ Sum?
§Count?
§Avg?
§Max?
§Median?

34CSE 444 - Spring 2020

Distributive Algebraic Holistic

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))

avg(B) =
sum(B)/count(B)

median(B)

May 20, 2020

Basic Parallel GroupBy

Can we do partial aggregate before reshuffle?
§ Sum?
§Count?
§Avg?
§Max?
§Median?

Yes for Distributive
Yes for Algebraic (just compute two aggregates)

35CSE 444 - Spring 2020

Distributive Algebraic Holistic

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))

avg(B) =
sum(B)/count(B)

median(B)

May 20, 2020

Hash-Partitioned Parallel Join

R(A,B) ⋈B=CS(C,D)

36CSE 444 - Spring 2020May 20, 2020

Hash-Partitioned Parallel Join

R(A,B) ⋈B=CS(C,D)

§ Step 1: reshuffle R on B; reshuffle S on C

May 20, 2020 CSE 444 - Spring 2020 37

Hash-Partitioned Parallel Join

R(A,B) ⋈B=CS(C,D)

§ Step 1: reshuffle R on B; reshuffle S on C

§ Step 2: join locally each fragment Ri⋈Si

May 20, 2020 CSE 444 - Spring 2020 38

Hash-Partitioned Parallel Join

R(A,B) ⋈B=CS(C,D)

39

R’1, S’1 R’2, S’2 R’P, S’P . . .

R1, S1 R2, S2 RP, SP . . .

Reshuffle R on R.A
and S on S.B

Each server computes
the join locally

CSE 444 - Spring 2020

Initially, both R and S are horizontally block partitioned

May 20, 2020

Hash-Partitioned Parallel Join: Recap

§ Step 1
• Every server holding any chunk of R partitions its

chunk using a hash function h(t.A) mod P
• Every server holding any chunk of S partitions its

chunk using a hash function h(t.B) mod P

§ Step 2:
• Each server computes the join of its local fragment of R

with its local fragment of S

40CSE 444 - Spring 2020May 20, 2020

Optimization for Small Relations

When joining R and S
§ If |R| >> |S|

• Leave R where it is
• Replicate entire S relation across nodes

§Also called a small join or a broadcast join

CSE 444 - Spring 2020 41May 20, 2020

R1, S R2, S RP, S. . .

R1 R2 RP. . .S

broadcast

Parallel Query Evaluation
New operator: Shuffle
§ Serves to re-shuffle data between processes

• Handles data routing, buffering, and flow control

§ Two parts: ShuffleProducer and ShuffleConsumer
§ Producer:

• Pulls data from child operator and sends to n
consumers

• Producer acts as driver for operators below it in query
plan

§Consumer:
• Buffers input data from n producers and makes it

available to operator through getNext() interface

42CSE 444 - Spring 2020May 20, 2020

Parallel Query Execution

CSE 444 - Spring 2020 43May 20, 2020

Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes

CSE 444 - Spring 2020 44

Assume:
R and S are block partitioned
SELECT *
FROM R, S
WHERE R.A = S.A

⋈&."#6." ⋈&."#6." ⋈&."#6."

Node 1 Node 2 Node 3
R S R S R S

May 20, 2020

Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes

CSE 444 - Spring 2020 45

Node 1 Node 2 Node 3

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

Assume:
R and S are block partitioned
SELECT *
FROM R, S
WHERE R.A = S.A

⋈&."#6." ⋈&."#6." ⋈&."#6."

R S R S R S

May 20, 2020

Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes

CSE 444 - Spring 2020 46

Node 1 Node 2 Node 3

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

Assume:
R and S are block partitioned

hash S.A hash S.A hash S.A

SELECT *
FROM R, S
WHERE R.A = S.A

⋈&."#6." ⋈&."#6." ⋈&."#6."

R S R S R S

May 20, 2020

Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes
2. Local join

CSE 444 - Spring 2020 47

Node 1 Node 2 Node 3

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

Assume:
R and S are block partitioned

hash S.A hash S.A hash S.A

SELECT *
FROM R, S
WHERE R.A = S.A

⋈&."#6." ⋈&."#6." ⋈&."#6."

R S R S R S

May 20, 2020

Machine 1

1/3 of R, S

Machine 2

1/3 of R, S

Machine 3

1/3 of R, S

Broadcasting S

σR.a – T.f >100

scan R

scan S

broadcast

R ⨝ S

σR.a – T.f >100

scan R

scan S

broadcast

R ⨝ S

σR.a – T.f >100

scan R

scan S

broadcast

R ⨝ S

49CSE 444 - Spring 2020May 20, 2020

Broadcast Join Example

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

SELECT *
FROM R, S, T
WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100

May 20, 2020 CSE 444 - Spring 2020 50

Example

σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

May 20, 2020 CSE 444 - Spring 2020 51

Example with Two Joins

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

Broadcasting S and T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

May 20, 2020 CSE 444 - Spring 2020 52

Example with Two Joins

Speedup and Scaleup

§Consider:
• Query: 𝛾A,sum(C)(R)
• Runtime: dominated by reading chunks from disk

§ Speedup: If we double the number of nodes P,
what is the new running time?

• Half (each server holds ½ as many chunks)
§ Scaleup: If we double both P and the size of R,

what is the new running time?
• Same (each server holds the same # of chunks)

CSE 444 - Spring 2020 53May 20, 2020

Speedup and Scaleup

§Consider:
• Query: 𝛾A,sum(C)(R)
• Runtime: dominated by reading chunks from disk

§ Speedup: If we double the number of nodes P,
what is the new running time?

• Half (each server holds ½ as many chunks)
§ Scaleup: If we double both P and the size of R,

what is the new running time?
• Same (each server holds the same # of chunks)

CSE 444 - Spring 2020 54May 20, 2020

Speedup and Scaleup

§Consider:
• Query: 𝛾A,sum(C)(R)
• Runtime: dominated by reading chunks from disk

§ Speedup: If we double the number of nodes P,
what is the new running time?

• Half (each server holds ½ as many chunks)
§ Scaleup: If we double both P and the size of R,

what is the new running time?
• Same (each server holds the same # of chunks)

CSE 444 - Spring 2020 55May 20, 2020

Summary

§With one new operator, we’ve made
SimpleDB an OLAP-ready parallel DBMS!

§Next lecture:
• Skew handling
•Algorithm refinements

May 20, 2020 CSE 444 - Spring 2020 56

Justin Biebers Re-visited

Skew:
§ Some partitions get more input tuples than others

• Range-partition instead of hash
• Some values are very popular: “heavy hitters”
• Selection before join with different selectivities

§ Some partitions generate more output tuples than
others

CSE 444 - Spring 2020 57May 20, 2020

Some Skew Handling Techniques

If using range partition:

§ Ensure each range gets same number of tuples

§ E.g.: {1, 1, 1, 2, 3, 4, 5, 6 } à [1,2] and [3,6]

§ Eq-depth v.s. eq-width histograms

CSE 444 - Spring 2020 58May 20, 2020

Some Skew Handling Techniques

Create more partitions than nodes

§And be smart about scheduling the partitions
• E.g. One node ONLY does Justin Biebers

§Note: MapReduce uses this technique

CSE 444 - Spring 2020 59May 20, 2020

Some Skew Handling Techniques

§ Broadcast join: if the join attribute of R is heavily
skewed, then broadcast S

§ If S is also large, then use ”skew-join”:
• Join the heavy hitters in R by broadcasting a fragment

of S
• Join the light hitters of R using hash-partition with the

rest of S
• (next slide)

May 20, 2020 CSE 444 - Spring 2020 60

Some Skew Handling Techniques

Use subset-replicate (a.k.a. “skewedJoin”)
§Given R ⋈A=B S
§Given a heavy hitter value R.A = ‘v’

(i.e. ‘v’ occurs very many times in R)
§ Partition R tuples with value ‘v’ across all nodes

e.g. block-partition, or hash on other attributes
§ Replicate S tuples with value ‘v’ to all nodes
§ R = the build relation
§ S = the probe relation

CSE 444 - Spring 2020 61May 20, 2020

