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Database System Internals

CSE 444 - Spring 2020

Intro to Parallel DBMSs



Scaling Single Query Response Time

§OLAP: Query response time
“Online Analytical Processing”

§ Entire parallel system answers one query

§Goal is to improve query runtime

§Use case is analysis of massive datasets
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Big Data

Volume alone is not an issue

§ Relational databases do parallelize easily
• Data partitioning
• Parallel query processing

§ SQL is embarrassingly parallel
• We will learn how to do this!
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Big Data

New workloads are an issue

§ Big volumes, small analytics
• OLAP queries: join + group-by + aggregate
• Can be handled by today’s RDBMSs

§ Big volumes, big analytics
• More complex Machine Learning
• E.g. click prediction, topic modeling, SVM, k-means
• Active area of research
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Building Our Parallel DBMS
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Data model? Relational

Scaleup goal?       OLAP



Building Our Parallel DBMS
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Data model? Relational

Scaleup goal?       OLAP

Architecture? 



Shared-Memory Architecture

CSE 444 - Spring 2020 7

Global Memory

Interconnection Network
(Motherboard)

D D D

P P P

§ Shared main memory and 
disks

§ Your laptop or desktop 
uses this architecture

§ Expensive to scale
§ Easiest to implement on
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Shared-Disk Architecture
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Interconnection Network
(SAN + SCSI)

D D D

P P P

M M M

§ Only shared disks
§ No contention for 

memory and high 
availability

§ Typically 1-10 machines



Shared-Nothing Architecture
§ Uses cheap, commodity 

hardware
§ No contention for 

memory and high 
availability

§ Theoretically can scale 
infinitely

§ Hardest to implement on
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Interconnection Network
(TCP)

D D D

P P P

M M M
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Building Our Parallel DBMS
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Data model? Relational

Scaleup goal?       OLAP

Architecture? Shared-Nothing



Shared-Nothing Execution Basics
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§Multiple DBMS instances (= processes) also 
called “nodes” execute on machines in a cluster

• One node plays role of the coordinator
• Other nodes play role of workers 

§Workers execute queries
• Typically all workers execute the same plan
• Workers can execute multiple queries at the same time

Node 1 Node 2 Node 3



Shared-Nothing Database

We will assume a system that consists of multiple 
commodity machines on a common network

New problem: Where does the data go?

The answer will influence our execution techniques
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Node 1 Node 2 Node 3



Option 1: Unpartitioned Table

§ Entire table on just one node in the system

§Will bottleneck any query we need to run in 
parallel

§We choose partitioning scheme to divide rows 
among machines
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Option 2: Block Partitioning
Tuples are horizontally (row) partitioned by raw size
with no ordering considered
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… … …

B(R) = K
B(R2) = K/N

B(RN) = K/N

B(R1) = K/N

N nodes
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Option 3: Range Partitioning

Node contains tuples in chosen attribute ranges
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A

… …

A

A

A

…

R2, v1 < A <= v2

RN, vN < A < inf

R1, -inf < A <= v1

N nodes
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Option 4: Hash Partitioning

Node contains tuples with chosen attribute hashes
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A

… …

A

A

A

…

R2, 2 = h(A)%N

RN, 0 = h(A)%N

R1, 1 = h(A)%N

N nodes

h(A)
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Skew: The Justin Bieber Effect

§Hashing data to nodes is very good when the 
attribute chosen better approximates a uniform 
distribution

§Keep in mind: Certain nodes will become 
bottlenecks if a poorly chosen attribute is hashed
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Parallel Selection
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Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

SELECT *
FROM R
WHERE A = 2
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Parallel Selection
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Node 1 Node 2 Node 3

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

SELECT *
FROM R
WHERE A = 2

𝜎"#$ 𝜎"#$ 𝜎"#$
A …
2 …

A …
2 …

A …
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Implicit Union
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Parallel query plans implicitly union at the end

Output

Node 1 Node 2 Node 3

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

𝜎"#$ 𝜎"#$ 𝜎"#$
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Parallel Selection

Compute  𝜎A=v(R), or 𝜎v1<A<v2(R)

§On a conventional database: cost = B(R)

Q: What is the cost on each node for a database 
with N nodes ?

A:
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Parallel Selection

Compute  𝜎A=v(R), or 𝜎v1<A<v2(R)

§On a conventional database: cost = B(R)

Q: What is the cost on each node for a database 
with N nodes ?

A: B(R) / N block reads on each node
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Partitioned Aggregation
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Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

𝛾&." 𝛾&."𝛾&."

SELECT R.A,sum(…)
FROM R
GROUP BY R.A
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Partitioned Aggregation
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Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

𝛾&." 𝛾&."𝛾&."A …
1 …
1 …

A …
2 …
2 …

A …
3 …
3 …
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SELECT R.A,sum(…)
FROM R
GROUP BY R.A



Partitioned Aggregation

1. Hash shuffle tuples
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Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

𝛾&." 𝛾&."𝛾&."A …
1 …
1 …

A …
2 …
2 …

A …
3 …
3 …
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SELECT R.A,sum(…)
FROM R
GROUP BY R.A



Partitioned Aggregation

1. Hash shuffle tuples
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Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

𝛾&." 𝛾&."𝛾&."A …
1 …
1 …

A …
2 …
2 …

A …
3 …
3 …
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SELECT R.A,sum(…)
FROM R
GROUP BY R.A



Partitioned Aggregation

1. Hash shuffle tuples
2. Local aggregation

CSE 444 - Spring 2020 27

Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

𝛾&." 𝛾&."𝛾&."A …
1 …
1 …

A …
2 …
2 …

A …
3 …
3 …
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SELECT R.A,sum(…)
FROM R
GROUP BY R.A



Partition Aggregation: Summary

Select A, sum(B) from R group by A

§Case 1: R is partitioned on A
• Do the group-by locally; done.

§Case 2: R is partitioned on something else
• Naïve: reshuffle on A, then do as in case 1

• Better: do a local group-by-sum (reduces size),
then reshuffle on A and do a second group-by

𝛾",)*+ , 𝑅. ∪ 𝑅$ ∪ ⋯∪ 𝑅1
= 𝛾",)*+ , (𝛾",)*+ , 𝑅. ∪ ⋯∪ 𝛾",)*+ , 𝑅1 )
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Partition Aggregation: Summary

Select A, sum(B) from R group by A
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Partition Aggregation: Summary

Select A, sum(B) from R group by A

§Case 1: R is partitioned on A
• Do the group-by locally; done.
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Partition Aggregation: Summary

Select A, sum(B) from R group by A

§Case 1: R is partitioned on A
• Do the group-by locally; done.

§Case 2: R is partitioned on something else
• Naïve: reshuffle on A, then do as in case 1

• Better: do a local group-by-sum (reduces size),
then reshuffle on A and do a second group-by

𝛾",)*+ , 𝑅. ∪ 𝑅$ ∪ ⋯∪ 𝑅1
= 𝛾",)*+ , (𝛾",)*+ , 𝑅. ∪ ⋯∪ 𝛾",)*+ , 𝑅1 )
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“Combiners”
in MapReduce



Basic Parallel GroupBy

Can we do partial aggregate before reshuffle?
§ Sum?
§Count?
§Avg?
§Max?
§Median?
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Basic Parallel GroupBy

Can we do partial aggregate before reshuffle?
§ Sum?
§Count?
§Avg?
§Max?
§Median?
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Distributive Algebraic Holistic

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))

avg(B) = 
sum(B)/count(B)

median(B)

May 20, 2020



Basic Parallel GroupBy

Can we do partial aggregate before reshuffle?
§ Sum?
§Count?
§Avg?
§Max?
§Median?

Yes for Distributive
Yes for Algebraic (just compute two aggregates)
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Distributive Algebraic Holistic

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))

avg(B) = 
sum(B)/count(B)

median(B)

May 20, 2020



Hash-Partitioned Parallel Join

R(A,B) ⋈B=CS(C,D)
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Hash-Partitioned Parallel Join

R(A,B) ⋈B=CS(C,D)

§ Step 1: reshuffle R on B; reshuffle S on C

May 20, 2020 CSE 444 - Spring 2020 37



Hash-Partitioned Parallel Join

R(A,B) ⋈B=CS(C,D)

§ Step 1: reshuffle R on B; reshuffle S on C

§ Step 2: join locally each fragment Ri⋈Si
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Hash-Partitioned Parallel Join

R(A,B) ⋈B=CS(C,D)

39

R’1, S’1 R’2, S’2 R’P, S’P .  .  .

R1, S1 R2, S2 RP, SP .  .  .

Reshuffle R on R.A
and S on S.B

Each server computes
the join locally
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Initially, both R and S are horizontally block partitioned
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Hash-Partitioned Parallel Join: Recap

§ Step 1
• Every server holding any chunk of R partitions its 

chunk using a hash function h(t.A) mod P
• Every server holding any chunk of S partitions its 

chunk using a hash function h(t.B) mod P

§ Step 2: 
• Each server computes the join of its local fragment of R 

with its local fragment of S
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Optimization for Small Relations

When joining R and S
§ If |R| >> |S|

• Leave R where it is
• Replicate entire S relation across nodes

§Also called a small join or a broadcast join
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R1, S R2, S RP, S.  .  .

R1 R2 RP.  .  .S

broadcast



Parallel Query Evaluation
New operator: Shuffle 
§ Serves to re-shuffle data between processes

• Handles data routing, buffering, and flow control

§ Two parts: ShuffleProducer and ShuffleConsumer
§ Producer:

• Pulls data from child operator and sends to n
consumers

• Producer acts as driver for operators below it in query 
plan

§Consumer:
• Buffers input data from n producers and makes it 

available to operator through getNext() interface
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Parallel Query Execution
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Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes 
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Assume:
R and S are block partitioned
SELECT *
FROM R, S
WHERE R.A = S.A

⋈&."#6." ⋈&."#6." ⋈&."#6."

Node 1 Node 2 Node 3
R S R S R S
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Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes 
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Node 1 Node 2 Node 3

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

Assume:
R and S are block partitioned
SELECT *
FROM R, S
WHERE R.A = S.A

⋈&."#6." ⋈&."#6." ⋈&."#6."

R S R S R S
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Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes 
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Node 1 Node 2 Node 3

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

Assume:
R and S are block partitioned

hash S.A hash S.A hash S.A

SELECT *
FROM R, S
WHERE R.A = S.A

⋈&."#6." ⋈&."#6." ⋈&."#6."

R S R S R S
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Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes 
2. Local join
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Node 1 Node 2 Node 3

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

Assume:
R and S are block partitioned

hash S.A hash S.A hash S.A

SELECT *
FROM R, S
WHERE R.A = S.A

⋈&."#6." ⋈&."#6." ⋈&."#6."

R S R S R S
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Machine 1

1/3 of R, S

Machine 2

1/3 of R, S

Machine 3

1/3 of R, S

Broadcasting S

σR.a – T.f >100

scan R

scan S

broadcast

R ⨝ S

σR.a – T.f >100

scan R

scan S

broadcast

R ⨝ S

σR.a – T.f >100

scan R

scan S

broadcast

R ⨝ S
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Broadcast Join Example



Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

SELECT * 
FROM R, S, T 
WHERE R.b = S.c AND S.d = T.e AND (R.a - T.f) > 100 
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Example



σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T
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Example with Two Joins



Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

Broadcasting S and T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T
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Example with Two Joins



Speedup and Scaleup

§Consider:
• Query: 𝛾A,sum(C)(R)
• Runtime: dominated by reading chunks from disk

§ Speedup: If we double the number of nodes P, 
what is the new running time?

• Half (each server holds ½ as many chunks)
§ Scaleup: If we double both P and the size of R, 

what is the new running time?
• Same (each server holds the same # of chunks)
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Speedup and Scaleup

§Consider:
• Query: 𝛾A,sum(C)(R)
• Runtime: dominated by reading chunks from disk

§ Speedup: If we double the number of nodes P, 
what is the new running time?

• Half (each server holds ½ as many chunks)
§ Scaleup: If we double both P and the size of R, 

what is the new running time?
• Same (each server holds the same # of chunks)
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Summary

§With one new operator, we’ve made 
SimpleDB an OLAP-ready parallel DBMS!

§Next lecture: 
• Skew handling 
•Algorithm refinements
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Justin Biebers Re-visited

Skew:
§ Some partitions get more input tuples than others

• Range-partition instead of hash
• Some values are very popular: “heavy hitters”
• Selection before join with different selectivities

§ Some partitions generate more output tuples than 
others
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Some Skew Handling Techniques

If using range partition:

§ Ensure each range gets same number of tuples

§ E.g.: {1, 1, 1, 2, 3, 4, 5, 6 } à [1,2] and [3,6]

§ Eq-depth v.s. eq-width histograms
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Some Skew Handling Techniques

Create more partitions than nodes

§And be smart about scheduling the partitions
• E.g. One node ONLY does Justin Biebers

§Note: MapReduce uses this technique
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Some Skew Handling Techniques

§ Broadcast join:  if the join attribute of R is heavily 
skewed, then broadcast S

§ If S is also large, then use ”skew-join”:
• Join the heavy hitters in R by broadcasting a fragment 

of S
• Join the light hitters of R using hash-partition with the 

rest of S
• (next slide)
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Some Skew Handling Techniques

Use subset-replicate (a.k.a. “skewedJoin”)
§Given R ⋈A=B S
§Given a heavy hitter value R.A = ‘v’

(i.e. ‘v’ occurs very many times in R)
§ Partition R tuples with value ‘v’ across all nodes

e.g. block-partition, or hash on other attributes
§ Replicate S tuples with value ‘v’ to all nodes
§ R = the build relation
§ S = the probe relation

CSE 444 - Spring 2020 61May 20, 2020


