fon
Shuffle S,4S,. S, 0n (X
sessionld
NumberOfsession
Date
K1 [Experimentin
A S —
lation Trial _- ~
vidual B
o | ez

Device
Resolution

Fite
SetupCondition

. ‘-lgggm;
<

(a) Traditional parallel query plan

: pV3.
Trial_has_Timecourse Trial_has_Trajectory A £ E E
s > S a4 d A
SAZ ; IR 2 *L
Fa [rsiin Py | Trald FAN N jiviion Vo s A Bt
uuuuuuu ectoryl A i ™
e e o JArya Cerséi h - . - P
13 1 prm ¥ Podrck oM ., . g
Horas, KeyiShae oly F
= A h N |1 /. §
PX | Timecourseld P | o . Weltor Jofiiaragenen b3,
urel iectory! M lla Gregor
Ju) Bors Y"""Oleﬂmsa"“f hyroel
eqem P \
leryn,

Gendry iy

gCube shuffle-based parallel

Database System Internals

Transactions: Recovery (part 2

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

February 18, 2022 CSE 444 - Spring 2021

Force/No-steal (most strict)

* FORCE: Pages of committed transactions must be
forced to disk before commit

* NO-STEAL.: Pages of uncommitted transactions
cannot be written to disk

Easy to implement (how?) and ensures atomicity

February 18, 2022 CSE 444 - Winter 2021

No-Force/Steal (least strict)

= NO-FORCE: Pages of committed transactions
need not be written to disk

» STEAL: Pages of uncommitted transactions may
be written to disk

In both cases, need a Write Ahead Log (WAL)
to provide atomicity in face of failures

February 18, 2022 CSE 444 - Winter 2021

Write-Ahead Log (WAL)

The Log: append-only file containing log records
» Records every single action of every TXN

» Forces log entries to disk as needed

» After a system crash, use log to recover

Three types: UNDO, REDO, UNDO-REDO
Aries: is an UNDO-REDO log

February 18, 2022 CSE 444 - Winter 2021

Policies and Logs

NO-STEAL STEAL
FORCE Lab 3 Undo Log
NO-FORCE Redo Log Undo-Redo Log

February 18, 2022 CSE 444 - Winter 2021

"UNDO" Log

FORCE and STEAL

February 18, 2022 CSE 444 - Winter 2021

Undo Logging

Log records
» <START T>

 transaction T has begun

» <COMMIT T>

T has committed

» <ABORT T>
* T has aborted

" <T,X,v>
* T has updated element X, and its o/d value was v
» I[dempotent, physical log records

February 18, 2022 CSE 444 - Winter 2021

Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8 %
OUTPUT(B) 16 16 16 16 16 B o aml |
COMMIT <COMMIT T>

WHAT DO WE DO ?

February

CSE 444 - Winter 2021

Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8>
INPUT(B) 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16 Crash |
COMMIT <COMMIT T> ‘

WHAT DO WE DO ?

February

We UNDO by setting B=8 and A=8

After Crash

* This is all we see (for example):

CEYSNCTEIN | <sTrTT

16 8 <T,A,8>
<T.B,8>

February 18, 2022 CSE 444 - Winter 2021 11

After Crash

* This is all we see (for example):

CEYSNCTEIN | <sTrTT

16 8 <T,A,8>
<T.B,8>

February 18, 2022 CSE 444 - Winter 2021

After Crash

* This is all we see (for example):
* Need to step through the log

CEYSNCTEIN | <sTrTT

16 8 <T,A,8>
<T.B,8>

February 18, 2022 CSE 444 - Winter 2021

After Crash

* This is all we see (for example):
* Need to step through the log

CEYSNCTEIN | <sTrTT

16 8 <T,A,8>
<T.B,8>

 \What direction?

February 18, 2022 CSE 444 - Winter 2021

After Crash

* This is all we see (for example):
* Need to step through the log

CEYSECTTTIN | <sTaRTT]

16 8 <T,A,8>
<T,B,8>

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

February 18, 2022 CSE 444 - Winter 2021

After Crash

* This is all we see (for example):
* Need to step through the log

CEYSECTTTIN | <saRTT]

16 8 <T,A,8>

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

February 18, 2022 CSE 444 - Winter 2021

After Crash

* This is all we see (for example):
* Need to step through the log

DiskA | Disk B IESTGIEE]

16 8 <TA8>

<T,B,8>

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

February 18, 2022 CSE 444 - Winter 2021

After Crash

* This is all we see (for example):
* Need to step through the log

DiskA__ Disk B IESTIEE]

8 8 <TA8>

<T,B,8>

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

February 18, 2022 CSE 444 - Winter 2021

After Crash

* This is all we see (for example):
* Need to step through the log

CEYSELTTTIN | <sTARTT]

8 8 <TA8>

<T,B,8>

 \What direction?

* In UNDO log, we start at the most
recent and go backwards in time

February 18, 2022 CSE 444 - Winter 2021

After Crash

= |f we see NO Commit statement:
« We UNDO both changes: A=8, B=8

* The transaction is atomic, since none of its actions have been
executed

= |n we see that T has a Commit statement
 We don’t undo anything

 The transaction is atomic, since both its actions have been
executed

February 18, 2022 CSE 444 - Winter 2021

Recovery with Undo Log

After system’s crash, run recovery manager

= Decide for each transaction T whether it is
completed or not

« <START T>...<COMMIT T>.... =yes
« <START T>....<ABORT T>....... = yes (already cleaned up)
e <START T>...cciiiiiiiiiii . =no

» Undo all modifications by incomplete transactions

February 18, 2022

Recovery with Undo Log

Recovery manager:

» Read log from the end; cases:
<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed
<T,X,v>:if T is not completed

then write X=v to disk

else ignore
<START T>: ignore

February 18, 2022

Recovery with Undo Log

Question1: Which updates
are undone ?
<T6,X6,v6>
Question 2:
A How far back do we need to
<START T5> read in the log ?
<START T4>
<T1,X1,v1> _
<T5,X5,v5> Question 3:
<T4 X4, v4> What happens if second crash during
<COMMIT T5> recovery?
<T3,X3,v3>
<T2,X2,v2>

Crash!
February 18, 2022 444 - Winter 2021

Recovery with Undo Log

February 18, 2022

<T6,X6,v6>

<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1: Which updates
are undone ?

Question 2:

How far back do we need to
read in the log ?

To the beginning.

Question 3:
What happens if second crash during
recovery?

Crash'! .
444 - \Winter 2021

Recovery with Undo Log

Question1: Which updates

are undone ?
<T6,X6,v6>
Question 2:

A How far back do we need to
<START T5> read in the log ?
<START T4> To the beginning.
<T1,X1,v1> _
<T5,X5,v5> Question 3:
<T4 X4, v4> What happens if second crash during
<COMMIT T5> recovery?
<T3,X3,v3> No problem! Log records are
<T2,X2,v2> idempotent. Can reapply.

Crash!
February 18, 2022 444 - Winter 2021

Action t Mem A | Mem B | Disk A | Disk B UNDO Log
I <START T>
INPUT(A) - When must 8
READ(A 1 3 we force pages 3
to disk ?
t=t*2 16 8
WRITE(A,t) 16 16 8 8 <T,A,8>
INPUT(B) | 16 16 8 8 8
READB) | 8 16 8 ; ; @)
-
t=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8>
OUTPUT(A) |-, 16 16 16 16 8
4
OUTPUT(B) |~ 16 16 16 16 16
COMMIT <COMMIT T>

February 18, 2022 CSE 444 - Winter 2021

Action t Mem A | Mem B | Disk A | DiskB UNDO Log
<START T>
INPUT(A) 8 8 8
READ(A 1) 8 8 8 8
t:=t*2 16 8 8 8
WRITEAL) | 16 16 8 8 { <T,A.8> >
INPUT(B) | 16 16 8 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 8 8 8
WRITE(B,!) 16 16 8 8 { <T,B,8> >
\/OUTPUT@ 16 16 | 16— 16 8
@ﬁu{(@r/m/ 16 16 16 16
commiT | FORCE {<COMMIT T

— RULES: log entry before OUTPUT before COMMIT h
February 18, 2022

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be written to
disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must be written
to disk before <COMMIT T>

*» Hence: OUTPUTs are done early, before the

transaction commits

February 18, 2022 CSE 444 - Winter 2021

Checkpointing

Checkpoint the database periodically

» Stop accepting new transactions

= Wait until all current transactions complete
* Flush log to disk

» Write a <CKPT> log record, flush

* Resume transactions

February 18, 2022 CSE 444 - Winter 2021

Undo Recovery with Checkpointing

<T9,X9,v0> |
> other transactions

During recovery, (all completed)
Can stop at first <CKPT> 7
<CKPT> <START T2> \
<START T3
4 <START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5> > transactions T2,T3,T4,T5
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

February 18, 2022 CSE 444 - Winter 2021

Nonquiescent Checkpointing

» Problem with checkpointing: database freezes
during checkpoint

* Would like to checkpoint while database is
operational

» |dea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

February 18, 2022 CSE 444 - Winter 2021

Nonquiescent Checkpointing

» Write a <START CKPT(T1,...,Tk)>
where T1,...,Tk are all active transactions. Flush
log to disk

= Continue normal operation

= \When all of T1,...,Tk have completed, write <END
CKPT>, flush log to disk

February 18, 2022 CSE 444 - Winter 2021

Undo with Nonquiescent Checkpointing

If we crash here;
Need to read
Back to start of
T4, T5, T6

If we crash here:

Need to read only to
<START CKPT T4..> ———

<START CKPT T4, T5, T6>

<END CKPT>

February 18, 2022

CSE 444 - Winter 2021

>earlier transactions plus
T4, T5, T6

>T4, T5, T6, plus
later transactions

' later transactions

KK}

Implementing ROLLBACK

= Recall: a transaction can end in COMMIT or
ROLLBACK

*» |dea: use the undo-log to implement ROLLBACK

" How ?
 LSN = Log Sequence Number

» Log entries for the same transaction are linked, using
the LSN’s

* Read log in reverse, using LSN pointers

February 18, 2022 CSE 444 - Winter 2021

|mp|eman+inn PN 1 RACK

<T9,X9,v9>

(all completed)
" |de| |<ckpT> CK
<START T2
"HOY | _gTART T3
° <START T5>
. <START T4> 5ing
| [<T1,X1,v1>
| | <T5,X5,v5>
<T2,X1,v2>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

February 18, 2022 CSE 444 - Winter 2021

REDO

NO-FORCE and NO-STEAL

February 18, 2022 CSE 444 - Winter 2021 38

Action t Mem A | Mem B | Disk A | Disk B
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

February 18, 2022

CSE 444 - Winter 2021

Is this bad ?

Action t MemA | Mem B | Disk A | Disk B
READ(A,1) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A,t) 16 16 8 8
READ(B, 1) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITE(B,) 16 16 16 8 8
COMMIT
OUTPUT(A)| 16 16 16 16 8 %
OuTPUTB)| 16 16 16 16 16

February 18, 2022 CSE 444 - Winter 2021

Is this bad ? Yes, it's bad: A=16, B=8
Action t Mem A | MemB | Disk A | Disk B
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8§TCrash!
OUTPUT(B) 16 16 16 16 16

February 18, 2022

CSE 444 - Winter 2021

Is this bad ?

Action t Mem A | Mem B | Disk A | Disk B

READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8

COMMIT <

OUTPUT(A) 16 16 16 16 8 e
OUTPUT(B) 16 16 16 16 16

February 18, 2022

CSE 444 - Winter 2021

. Is this bad ? _ Yes, it's bad: lost update I

Action t Mem A | Mem B | Disk A | Disk B

READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8

COMMIT <

OUTPUT(A) 16 16 16 16 8 e
OUTPUT(B) 16 16 16 16 16

February 18, 2022

CSE 444 - Winter 2021

Is this bad ?

Action t Mem A | Mem B | Disk A | Disk B
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

February 18, 2022

CSE 444 - Winter 2021

|\
Crash'!

Is this bad ? No: that's OK.

Action t Mem A | Mem B | Disk A | Disk B
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8
COMMIT
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

February 18, 2022

CSE 444 - Winter 2021

|\
Crash'!

Redo Logging

One minor change to the undo log:

= <T,X,v>=T has updated element X, and its new
value is v

February 18, 2022 CSE 444 - Winter 2021

Action t Mem A | Mem B | Disk A | DiskB REDO Log
<START T>
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,16>
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
OUTPUT(A) 16 16 16 16 8
OUTPUT(B) 16 16 16 16 16

February 18, 2022

CSE 444 - Winter 2021

Action t Mem A | Mem B | Disk A | DiskB REDO Log
<START T>
READ(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,16>
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
OUTPUT(A) 16 16 16 16 8 el
OUTPUT(B) 16 16 16 16 16 %

How do we recover ?

February 18, 2022 CSE 444 - Winter 2021

Action t Mem A | Mem B | Disk A | Disk B REDO Log
<START T>
READ(A,1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,16>
READ(B,t) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,1) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
OUTPUT(A) 16 16 16 16 8 e B
OUTPUT(B) 16 16 16 16 16 %
How do we recover ? We REDO by setting A=16 and B=16

February 18, 2022 CSE 444 - Winter 2021

Recovery with Redo Log

After system’s crash, run recovery manager

= Step 1. Decide for each transaction T whether it is
committed or not

« <START T>...<COMMIT T>.... =yes
e <START T>...<ABORT T>....... = no
e <START 1>, = NO

» Step 2. Read log from the beginning, redo all
updates of committed transactions

February 18, 2022 CSE 444 - Winter 2021

Recovery with Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2> :
<START T3> Show actions
<T1,X3,v3> during recovery
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

-y v g

February 18, 2022 CSE 444 - Winter 2021

Nonquiescent Checkpointing

= Write a <START CKPT(T1,...,Tk)>
where T1,..., Tk are all active txn’s

» Begin flush to disk all blocks of committed
transactions (dirty blocks)

» Meantime, continue normal operation

= \When all blocks have been written, write
<END CKPT>

END CKPT has different meaning here than in Undo log!

It does not mean that T1,...,Tk are complete

February 18, 2022 CSE 444 - Winter 2021 53

Nonquiescent Checkpointing

Step 1: look for

The last

<END CKPT> and it’s
<START CKPT>

All OUTPUTs
of T1 are
known to be on disk

Cannot
use

February 18, 20

|_—

<START T1>
<COMMIT T1>
<START T4>

<START CKPT T4, T5, T6>

<END CKPT>

| <START CKPT T9, T10>

CSE 444 - Winter 2021

Step 2: redo
from the
earliest
start of

T4, T5, T6
ignoring
transactions
committed
earlier

Action t Mem A I/VN Disk B REDO Log
When must <START T>
READ(A 1 3 g\ we force pages /g
to disk ?
t=t*2 16 8 8
WRITE(At) 16 16 8 8 <T,A,16>
READ(B, 1) 8 16 8 8 8
t=t2 16 16 8 8 8)
g
WRITE(B,t) 16 16 16 8 8 <T,B,16>
COMMIT <COMMIT T>
oUTPUT(A) | 16 16 16 16 8
OUTFMT(B)E?/ 16 16 16 16 16

February 18, 2022

CSE 444 - Winter 2021

Action t Mem A | Mem B | Disk A | Disk B REDO Log
<START T>
READ(A,1) 8 8 8 8
t=t*2 16 8 8 8
WRITEALD | 16 16 8 8 <T,A,16>
READ(B,1) 8 16 8 8 8
t=t*2 16 16 8 8 8
WRITEB,) | 16 16 16 8 8 <1.B.16>
COMMIT /_/_//—QCOMMW ﬁ»
@TPUT(A) 16 6 | 16 | 16— 8
@/ra/ 16 16 16 16
RULE: OUTPUT after COMMIT NO-STEAL

February 18, 2022 CSE 444 - Winter 2021

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk before
OUTPUT(X)

» Hence: OUTPUTs are done late

NO-STEAL

February 18, 2022 CSE 444 - Winter 2021

Comparison Undo/Redo

= Undo logging: Steal/Force
 OUTPUT must be done early

« If <COMMIT T> is seen, T definitely has written all its data to disk
(hence, don’t need to redo) — inefficient

* Redo logging

. OUTPUT must be done late | No-Steal/No-Force

« If <COMMIT T> is not seen, T definitely has not written any of its
data to disk (hence there is not dirty data on disk, no need to undo)
— inflexible

» Would like more flexibility on when to OUTPUT: undo/redo
logging (next)

Steal/No-Force

February 18, 2022

Undo/Redo Logging

Log records, only one change

» <T,X,u,v>=T has updated element X, its old
value was u, and its new value is v

February 18, 2022

Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must be written
to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late relative to
<COMMIT T>

February 18, 2022

Action T MemA | MemB | Disk A Disk B Log
<START T>
REAT(A1) 8 8 8 8
t:=t*2 16 8 8 8
WRITE(A,1) 16 16 8 8 <T,A,8,16>
READ(B,1) 8 16 8 8 8
t:=t*2 16 16 8 8 8
WRITE(B,t) 16 16 16 8 8 <T,B,8,16>
OUTPUT(A) 16 16 16 16 8
<COMMIT T>
OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMIT

February 18, 2022

CSE 444 - Winter 2021

62

Recovery with Undo/Redo Log

After system’s crash, run recovery manager
» Redo all committed transaction, top-down
» Undo all uncommitted transactions, bottom-up

February 18, 2022

Recovery with Undo/Redo Log

<START T1> 1
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

February 18, 2022

ARIES

February 18, 2022 CSE 444 - Winter 2021 65

Aries

» ARIES pieces together several techniques into a
comprehensive algorithm

» Developed at IBM Almaden, by Mohan
» IBM botched the patent, so everyone uses it now

» Several variations, e.g. for distributed
transactions

February 18, 2022 CSE 444 - Winter 2021

ARIES Recovery Manager

Log entries:
» <START T> --when T begins
» Update: <T,X,u,v>

» T updates X, old value=u, new value=v
 Logical description of the change

s <COMMIT T> or <ABORT T> then <END>
s <CLR> — we’ll talk about them later.

February 18, 2022 CSE 444 - Winter 2021

ARIES Recovery Manager

Rule:

= [f T modifies X, then <T,X,u,v> must be written
to disk before OUTPUT(X)

We are free to OUTPUT early or late w.r.t
commits

February 18, 2022 CSE 444 - Winter 2021

LSN = Log Sequence Number

SN = identifier of a log entry

* Log entries belonging to the same TXN are linked with
extra entry for previous LSN

»Each page contains a pageLSN:
* LSN of log record for latest update to that page

February 18, 2022 CSE 444 - Winter 2021

ARIES Data Structures

= Active Transactions Table
e Lists all active TXN’s
* For each TXN: lastLSN = its most recent update LSN

* Dirty Page Table
e Lists all dirty pages

* For each dirty page: recoveryLSN (recLSN)= first LSN
that caused page to become dirty

= Write Ahead Log
* LSN, prevLSN = previous LSN for same txn

February 18, 2022 CSE 444 - Winter 2021

Data Structures

Dirty pages
pagelD recLSN
P5 102
P6 103
P7 101

Active transactions

transiD lastLSN
T100 104
T200 103

February 18, 2022

Log (WAL)
LSN | prevLSN |transID | pagelD |Log entry
101 |- 7100 P7
102 |- T200 P5
103 | 102 T200 P6
104 | 101 7100 P5

Buffer Pool
P2
P5 P6 P7
PageLSN=104 | PageLSN=103 | PageLSN=101

CSE 444 - Winter 20

ARIES Normal Operation

T writes page P
» What do we do ?

February 18, 2022 CSE 444 - Winter 2021

ARIES Normal Operation

T writes page P
» What do we do ?

* Write <T,P,u,v> in the Log
 pageLSN=LSN
 prevLSN=lastLSN

* |lastLSN=LSN
 recLSN-=if isNull then LSN

February 18, 2022 CSE 444 - Winter 2021

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
* What do we do ?

Buffer manager wants INPUT(P)
* \What do we do ?

February 18, 2022 CSE 444 - Winter 2021

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
» Flush log up to pageLSN

» Remove P from Dirty Pages table
Buffer manager wants INPUT(P)

* \What do we do ?

February 18, 2022 CSE 444 - Winter 2021

7

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
» Flush log up to pageLSN

» Remove P from Dirty Pages table
Buffer manager wants INPUT(P)

» Create entry in Dirty Pages table
recLSN = NULL

February 18, 2022 CSE 444 - Winter 2021

ARIES Normal Operation

Transaction T starts
= \What do we do ?

Transaction T commits/aborts
= \What do we do ?

February 18, 2022 CSE 444 - Winter 2021

ARIES Normal Operation

Transaction T starts
* Write <START T> in the log

* New entry T in Active TXN;
lastLSN = null

Transaction T commits
= \What do we do ?

February 18, 2022 CSE 444 - Winter 2021

ARIES Normal Operation

Transaction T starts
* Write <START T> in the log

* New entry T in Active TXN;
lastLSN = null

Transaction T commits

= Write <COMMIT T> in the log
* Flush log up to this entry

* Write <END>

February 18, 2022 CSE 444 - Winter 2021

Checkpoints

Write into the log

= Entire active transactions table
= Entire dirty pages table

Recovery always starts by analyzing latest checkpoint

Background process periodically flushes dirty pages to disk

February 18, 2022 CSE 444 - Winter 2021

ARIES Recovery

1. Analysis pass
« Figure out what was going on at time of crash
« List of dirty pages and active transactions

2. Redo pass (repeating history principle)
 Redo all operations, even for transactions that will not commit
« Get back to state at the moment of the crash

3. Undo pass
« Remove effects of all uncommitted transactions
* Log changes during undo in case of another crash during undo

February 18, 2022 CSE 444 - Winter 2021

1. Analysis Phase

» Goal
» Determine point in log where to start REDO

» Determine set of dirty pages when crashed
« Conservative estimate of dirty pages

« |dentify active transactions when crashed

= Approach

* Rebuild active transactions table and dirty pages table
* Reprocess the log from the checkpoint

» Only update the two data structures
» Compute: firstLSN = smallest of all recoveryLSN

February 18, 2022 CSE 444 - Winter 2021

1. Analysis Phase

Log Checkpoint (crash)

T

firstLSN= 777

Where do we start
the REDO phase ?

Dirty

pages pagelD | recLSN
Active transID | lastLSN
txn

February 18, 2022 CSE 444 - Winter 2021

1. Analysis Phase

L 09 Checkpoint (crash)

T

firstLSN=min(recLSN)

Dirty

pages pagelD | recLSN
Active transID | lastLSN
txn

February 18, 2022 CSE 444 - Winter 2021 88

1. Analysis Phase

Dirty
pages

L o) g Checkpoint
firstLSN
pagelD | recLSN history réa:g:éli): | Eéé;s:@:
A
transiD | lastLSN

Active
txn

February 18, 2022

(crash)

I lastLSN |

| transID ! lastLSN ,

I

CSE 444 - Winter 2021

2. Redo Phase

Main principle: replay history

» Process Log forward, starting from firstLSN
» Read every log record, sequentially

» Redo actions are not recorded in the log

* Needs the Dirty Page Table

February 18, 2022 CSE 444 - Winter 2021

2. Redo Phase: Detalls

For each Log entry record LSN: <T,P,u,v>
» Redo the action P=u and WRITE(P)
» Only redo actions that need to be redone

February 18, 2022 CSE 444 - Winter 2021

2. Redo Phase: Detalls

For each Log entry record LSN: <T,P,u,v>
* If P is not in Dirty Page then no update
* |[f recLSN > LSN, then no update

» Read page from disk:
If pageLSN >= LSN, then no update

= Otherwise perform update

February 18, 2022 CSE 444 - Winter 2021

2. Redo Phase: Detalls

What happens if system crashes during REDO ?

February 18, 2022 CSE 444 - Winter 2021 93

2. Redo Phase: Detalls

What happens if system crashes during REDO ?

We REDO again! The pagelLSN will ensure that
we do not reapply a change twice

February 18, 2022 CSE 444 - Winter 2021

3. Undo Phase

= Cannot “unplay” history, in the same way as we
“replay” history

= WHY NOT ?

February 18, 2022 CSE 444 - Winter 2021 95

3. Undo Phase

= Cannot “unplay” history, in the same way as we
“replay” history
= \WHY NOT ?

* Undo only the loser transactions

* Need to support ROLLBACK: selective undo, for one
transaction

» Hence, logical undo v.s. physical redo

February 18, 2022 CSE 444 - Winter 2021

3. Undo Phase

Main principle: “logical” undo
» Start from end of Log, move backwards
» Read only affected log entries

» Undo actions are written in the Log as special
entries: CLR (Compensating Log Records)

= CLRs are redone, but never undone

February 18, 2022 CSE 444 - Winter 2021

3. Undo Phase: Detalls

= “|_oser transactions” = uncommitted
transactions in Active Transactions Table

= ToUndo = set of lastLSN of loser transactions

February 18, 2022 CSE 444 - Winter 2021 98

3. Undo Phase: Detalls

While ToUndo not empty:

» Choose most recent (largest) LSN in ToUndo

» [f LSN = reqgular record <T,P,u,v>:

» Write a CLR where CLR.undoNextLSN = LSN.prevLSN
« Undov

= [f LSN = CLR record:

e Don’tundo!

» if CLR.undoNextLSN not null, insert in ToUndo
otherwise, write <END> in log

February 18, 2022 CSE 444 - Winter 2021

o)

3. Undo Phase: Detalls

What happens if system crashes during UNDO ?

February 18, 2022 CSE 444 - Winter 2021

3. Undo Phase: Detalls

What happens if system crashes during UNDO ?

We do not UNDO again! Instead, each CLR is a
REDO record: we simply redo the undo

February 18, 2022 CSE 444 - Winter 2021

