fon
Shuffle S,4S,. S, 0n (X
sessionld
NumberOfsession
Date
K1 [Experimentin
A S —
lation Trial _- ~
vidual B
o | ez

Device
Resolution

Fite
SetupCondition

. ‘-lgggm;
<

(a) Traditional parallel query plan

: pV3.
Trial_has_Timecourse Trial_has_Trajectory A £ E E
s > S a4 d A
SAZ ; IR 2 *L
Fa [rsiin Py | Trald FAN N jiviion Vo s A Bt
uuuuuuu ectoryl A i ™
e e o JArya Cerséi h - . - P
13 1 prm ¥ Podrck oM ., . g
Horas, KeyiShae oly F
= A h N |1 /. §
PX | Timecourseld P | o . Weltor Jofiiaragenen b3,
urel iectory! M lla Gregor
Ju) Bors Y"""Oleﬂmsa"“f hyroel
eqem P \
leryn,

Gendry iy

gCube shuffle-based parallel

Database System Internals

Optimistic Concurrency Control

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle

February 11, 2022 CSE 444 - Winter 2022

Announcements

* HW 4 out now
» Transactions (locking and OCC)
* Due 2/22

February 11, 2022 CSE 444 - Winter 2022 2

Pessimistic vs. Optimistic

» Pessimistic CC (locking)
* Prevents unserializable schedules

* Never abort for serializability (but may abort for deadlocks)
» Best for workloads with high levels of contention

» Optimistic CC (timestamp, multi-version, validation)
« Assume schedule will be serializable
« Abort when conflicts detected
» Best for workloads with low levels of contention

February 11, 2022 CSE 444 - Winter 2022 3

= Concurrency control by timestamps (18.8)

= Concurrency control by validation (18.9)

» Snapshot Isolation

February 11, 2022 CSE 444 - Winter 2022 4

» Each transaction receives unique timestamp TS(T)

Could be:

* The system’s clock
* A unique counter, incremented by the scheduler

February 11, 2022 CSE 444 - Winter 2022 5

Main invariant:

The timestamp order defines
the serialization order of the transaction

Will generate a schedule that is view-equivalent
to a serial schedule, and recoverable

February 11, 2022 CSE 444 - Winter 2022

With each element X, associate

= RT(X) = the highest timestamp of any transaction U
that read X

= WT(X) = the highest timestamp of any transaction U
that wrote X

» C(X) = the commit bit: true when transaction with
highest timestamp that wrote X committed

February 11, 2022 CSE 444 - Winter 2022

With each element X, associate

= RT(X) = the highest timestamp of any transaction U
that read X

= WT(X) = the highest timestamp of any transaction U
that wrote X

» C(X) = the commit bit: true when transaction with
highest timestamp that wrote X committed

If transactions abort, we must reset th@

February 11, 2022 CSE 444 - Winter 2022

For any r(X) or w(X) request, check for
conflicts:

I_-Iow do we check
m WU(X) o rT(X) if Read too late ?

= ry(X) . .. we(X)

Wy(X) . wrlX)

late ?

February 11, 2022 CSE 444 - Winter 2022

For any r(X) or w(X) request, check for
conflicts:

How do we check
m WU(X) o rT(X) if Read too late ?
" ry(X) . .. w(X)

Wy(X) . wr(X)

late ?

When T requests r(X), need to check TS(U) < TS(T)

February 11, 2022 CSE 444 - Winter 2022

Read Too Late

= T wants to read X

STAIE?T(T) ... START(U) ... wU(;<) L rTE(X)

February 11, 2022 CSE 444 - Winter 2022

Read Too Late

= T wants to read X

STAIE?T(T) ... START(U) ... wU(;<) L rTE(X)

If WT(X) > TS(T) then need to rollback T'!
T tried to read too late

February 11, 2022 CSE 444 - Winter 2022

Write Too Late

= T wants to write X

STAﬁaT(T) ... START(U) ... rU(xi) . w{(X)

February 11, 2022 CSE 444 - Winter 2022

Write Too Late

= T wants to write X

STAﬁaT(T) ... START(U) ... rU(xi) . w{(X)

If RT(X) > TS(T) then need to rollback T'!
T tried to write too late

February 11, 2022 CSE 444 - Winter 2022

Thomas’ Rule

But... we can still handle it in one case:
= T wants to write X

STAI%T(T) ... START(V) ... wv(;<) L WTE(X)

February 11, 2022 CSE 444 - Winter 2022

Thomas’ Rule

But we can still handle it:
= T wants to write X

STAI%T(T) ... START(V) ... wv(;<) L WTE(X)

If RT(X) < TS(T) and WT(X) > TS(T)
then don’t write X at all !

Why does this work?

February 11, 2022 CSE 444 - Winter 2022

Thomas’ Rule

But we can still handle it:
= T wants to write X

STAI%T(T) ... START(V) ... wv(;<) L WTE(X)

If RT(X) < TS(T) and WT(X) > TS(T)
then don’t write X at all !

View-serializable:
Why does this work? V will have overwritted T!

February 11, 2022 CSE 444 - Winter 2022

View-Serializability

» By using Thomas’ rule we do obtain a view-
serializable schedule

February 11, 2022 CSE 444 - Winter 2022

Summary So Far

Only for transactions that do not abort
Otherwise, may result in non-recoverable schedule

Transaction wants to READ element X
If WT(X)>TS(T) then ROLLBACK

Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to WRITE element X
If RT(X) > TS(T) then ROLLBACK

Else if WT(X) > TS(T) ignore write & continue (Thomas Write Rule)
Otherwise, WRITE and update WT(X) =TS(T)

February 11, 2022 CSE 444 - Winter 2022

Ensuring Recoverable Schedules

Recall:

» Schedule avoids cascading aborts if whenever a
transaction reads an element, then the transaction
that wrote it must have already committed

» Use the commit bit C(X) to keep track if the
transaction that last wrote X has committed

(just a read will not change the commit bit)

February 11, 2022 CSE 444 - Winter 2022

Ensuring Recoverable Schedules

Read dirty data:
» T wants to read X, and WT(X) < TS(T)
= Seems OK, but...

START(U) .. START(T) ... wy(X). . {r+(X)).. ABoéT(U)

If C(X)=false, T needs to wait for it to become true

February 11, 2022 CSE 444 - Winter 2022

Ensuring Recoverable Schedules

Thomas’ rule needs to be revised:
» T wants to write X, and WT(X) > TS(T)
= Seems OK not to write at all, but ...

START(T) .. START(U)... wy(X). . . @(X). .. ABORT(U)

If C(X)=false, T needs to wait for it to become true

February 11, 2022 CSE 444 - Winter 2022

Timestamp-based Scheduling

* When a transaction T requests r{(X) or w(X),
the scheduler examines RT(X), WT(X), C(X),
and decides one of:

e To grant the request, or

e To rollback T (and restart with later timestamp)
e To delay T until C(X) = true

February 11, 2022 CSE 444 - Winter 2022

23

Timestamp-based Scheduling

RULES including commit bit

» There are 4 long rules in Sec. 18.8.4
* You should be able to derive them yourself, based

on the previous slides
» Make sure you understand them !

February 11, 2022

READING ASSIGNMENT:
Garcia-Molina et al. 18.8.4

CSE 444 - Winter 2022

24

Timestamp-based Scheduling (sec. 18.8.4)

Transaction wants to READ element X
If WT(X) > TS(T) then ROLLBACK
Else If C(X) = false, then WAIT
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to WRITE element X
If RT(X)>TS(T) then ROLLBACK
Else if WT(X) > TS(T)
Then If C(X) = false then WAIT
else IGNORE write (Thomas Write Rule)
Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false

February 11, 2022 CSE 444 - Winter 2022

Basic Timestamps with Commit Bit

T, T, T, T, A
1 2 3 4 RT=0
WT=0 C=true
W3(A)

Time

February 11, 2022 CSE 444 - Winter 2022

Basic Timestamps with Commit Bit

Time

February 11, 2022 CSE 444 - Winter 2022

T, T, T, T, A
1 2 3 4 RT=0
WT=0 C=true
W, (A) WT=2 C-=false
R.(A) RT=0
Abort Rs(A)
Delay
C C=true
R5(A) RT=3
W,(A)| WT=4 C-=false
W3(A)
delay
abort | WT=2 C=true
W3(A) WT=3 C-=false

Summary of Timestamp-based Scheduling

= \/iew-serializable

» Avoids cascading aborts (hence: recoverable)

*» Does NOT handle phantoms

* These need to be handled separately, e.g. predicate
locks

February 11, 2022 CSE 444 - Winter 2022

Multiversion Timestamp

» When transaction T requests r(X)
but WT(X) > TS(T), then T must rollback

» |dea: keep multiple versions of X:
X, Xiq, Xigy -+ v

TS(X)) > TS(Xiq) > TS(Xin) > . ..

February 11, 2022 CSE 444 - Winter 2022

* When w+(X) occurs,
if the write is legal then
create a new version, denoted X, where t=TS(T)

February 11, 2022 CSE 444 - Winter 2022

* When w+(X) occurs,
if the write is legal then
create a new version, denoted X, where t=TS(T)

= When r{(X) occurs,
find most recent version X, such that t <= TS(T)

Notes:
« WT(X,) =tand it never changes for that version
« RT(X;) must still be maintained to check legality of writes

» Can delete X, if we have a later version X;; and all active
transactions T have TS(T) > t1

February 11, 2022 CSE 444 - Winter 2022

Example (in class)

Four versions of X:
X3 X9 X12 X18

Rz(X) -- Read X,

W,,(X) — Check read timestamp of X,
R,5(X) — Read X,,

W;(X) — Check read timestamp of X,

When can we delete X;?

February 11, 2022 CSE 444 - Winter 2022

Example w/ Basic Timestamps

Timestamps:

February 11, 2022 CSE 444 - Winter 2022

T, T, T, T, A
150 200 |[175 |225 RT=0
WT=0
R4(A) RT=150
W, (A) WT=150
R,(A) RT=200
W, (A) WT=200
R3(A)
Abort
R4(A) | RT=225

Example w/ Multiversion

T T, T3 T4 Ao Aiso Az00
150 200 175 | 225
R4(A) RT=150
W, (A) Create
R,(A) RT=200
W,(A) Create
R5(A) RT=200
W3(A)
abort
R4(A) RT=225

February 11, 2022 CSE 444 - Winter 2022

Example w/ Multiversion

T T, T3 T4 Ao Aiso Az00
150 200 175 || 225
R4(A) RT=150
W, (A) Create
R,(A) RT=200
W,(A) Create
R5(A) RT=200
W3(A)
abort
R4(A) RT=225

February 11, 2022 CSE 444 - Winter 2022

Second Example w/ Multiversion

Ty T, T, T, T A, Ay A, A, A, A
1 2 3 4 5
W,y (A)

February 11, 2022 CSE 444 - Winter 2022

Second Example w/ Multiversion

Ty T, T, T, T A, Ay A, A, A, A
1 2 3 4 5
W,(A) Create
W1(A) Create
R,(A) RT=2
R5(A) RT=3
W3 (A)
abort R5(A) RT=5
W5(A) Create
R,(A) RT=5
R4(A) RT=3
C X
C X

February 11, 2022 CSE 444 - Winter 2022

X means that we can delete this version

= Concurrency control by timestamps (18.8)
= Concurrency control by validation (18.9)
» Snapshot Isolation

February 11, 2022 CSE 444 - Winter 2022 38

Concurrency Control by Validation

» Each transaction T defines:
* Read set RS(T) = the elements it reads
* Write set WS(T) = the elements it writes

» Each transaction T has three phases:
* Read phase; time = START(T)
» Validate phase (may need to rollback); time = VAL(T)
« Write phase; time = FIN(T)

Main invariant: the serialization order is VAL(T)

February 11, 2022 CSE 444 - Winter 2022

Avoid r+(X) - w,(X) Conflicts

START(U) VAL(U) FIN(U)

U: | Read phase | Validate | Write phase

conflicts

T. | Read phase | Validate ?

f
START(T) VAL(T)

IF RS(T) N WS(U) and FIN(U) > START(T)
(U has validated and U has not finished before T begun)
Then ROLLBACK(T)

February 11, 2022 CSE 444 - Winter 2022

Avoid w(X) - w,(X) Conflicts

START(U) VAL(U) FIN(U)

l

U: | Read phase | Validate | Write phase

Nnﬂicts
T. | Read phase Validate Write phase ?
f
START(T) VAL(T)

IF WS(T) N WS(U) and FIN(U) > VAL(T)
(U has validated and U has not finished before T validates)
Then ROLLBACK(T)

February 11, 2022 CSE 444 - Winter 2022

= Concurrency control by timestamps (18.8)
= Concurrency control by validation (18.9)

= Snapshot Isolation
* Not in the book, but good overview in Wikipedia

February 11, 2022 CSE 444 - Winter 2022

Snapshot Isolation

= A type of multiversion concurrency control algorithm
* Provides yet another level of isolation

» Very efficient, and very popular
» Oracle, PostgreSQL, SQL Server 2005

* Prevents many classical anomalies BUT...

* Not serializable (!), yet ORACLE and PostgreSQL use it
even for SERIALIZABLE transactions!

» But “serializable snapshot isolation” now in PostgreSQL

February 11, 2022 CSE 444 - Winter 2022

Snapshot Isolation Overview

= Each transactions receives a timestamp TS(T)

» Transaction T sees snapshot at time TS(T) of the database

= W/W conflicts resolved by “first committer wins” rule
» Loser gets aborted

= R/W conflicts are ignored

February 11, 2022

Snapshot Isolation Detalls

= Multiversion concurrency control:
» Versions of X: Xy, X0, Xis, - . .

= When T reads X, return Xygm).

* \When T writes X (to avoid lost update):

* |f latest version of X is TS(T) then proceed
* Else if C(X) = true then abort
 Else if C(X) = false then wait

« When T commits, write its updates to disk

February 11, 2022

What Works and What Not

* No dirty reads (Why ?)

» Start each snapshot with consistent state

* No inconsistent reads (Why ?)

» Two reads by the same transaction will read same
snapshot

* No lost updates (“first committer wins™)
» Moreover: no reads are ever delayed

» However: read-write conflicts not caught!

« Atxn can read and commit even though the value had
changed in the middle

February 11, 2022

Write Skew

T1: T2:
READ(X); READ(Y);
if X>=50 if Y >= 50
then'Y = -50; WRITE(Y) then X =-50; WRITE(X)
COMMIT COMMIT

In our notation:

R1(X)’ RZ(Y)! W1 (Y)’ WZ(X)’ C1’C2

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !

February 11, 2022 CSE 444 - Winter 2022 47

Write Skews Can Be Serious

» Acidicland had two viceroys, Delta and Rho
» Budget had two registers: taXes, and spendYng
* They had high taxes and low spending...

Delta: Rho:
READ(taXes); READ(spendYng);
if taXes = ‘High’ if spendYng = ‘Low’
then { spendYng = ‘Raise’; then {taXes = ‘Cut’;
WRITE(spendYng) } WRITE(taXes) }
COMMIT COMMIT

... and they ran a deficit ever since.

February 11, 2022 CSE 444 - Winter 2022 48

Discussion: Tradeoffs

= Pessimistic CC: Locks
« Great when there are many conflicts
* Poor when there are few conflicts

= Optimistic CC: Timestamps, Validation, SI
* Poor when there are many conflicts (rollbacks)
» Great when there are few conflicts

= Compromise
« READ ONLY transactions — timestamps
« READ/WRITE transactions — locks

February 11, 2022 CSE 444 - Winter 2022

Commercial Systems

Always check documentation!
= DB2: Strict 2PL
= SQL Server:

« Strict 2PL for standard 4 levels of isolation
« Multiversion concurrency control for snapshot isolation

» PostgreSQL.: Sl; recently: seralizable SI (!)
= Oracle: Sl

February 11, 2022 50

