
1April 29, 2020

Database System Internals

CSE 444 - Spring 2020

Concurrency Control Intro

Announcements

§ Lab2 due on Friday, 5/1/2020

§Quiz: next Wednesday, 5/6/2020
• Short (30’ or less)
• NOT during the lecture; but a window of time; TDB

§Homework 3 due on Thursday, 5/7/2020

April 29, 2020 CSE 444 - Spring 2020 2

Query Optimization Wrapup

§Cardinality Estimation

§ Search Space

§ Search Algorithm

April 29, 2020 CSE 444 - Spring 2020 3

Search Algorithm

§ Join order using dynamic programming:
System R 1979; aka Selinger’s algorithm

§ Create a table where, for each subquery, we store its
size, cost, and optimal plan:
• {R1}, {R2}, {R3}, … -- single table
• {R1,R2}, {R1,R3}, …
• …
• {R1,R2,…,Rn} -- entire query

§ E.g. entry for {R3,R6,R7,R9}:
• Consider {R3,R6,R7} ⋈ R9 or {R3,R6,R9} ⋈ R7 or …
• Lookup cost/plan for {R3,R6,R7} in table, etc
• Retain the cheapest cost/plan for {R3,R6,R7,R9}

April 29, 2020 CSE 444 - Spring 2020 4

Search Algorithm -- Details

§ Runs in exponential time in general
§Heuristics:

• Left-deep trees only
• Avoid cartesian products
• See last few slides of lecture13 for an analysis

April 29, 2020 CSE 444 - Spring 2020 5

Search Algorithm -- Details

§ “Interesting Orders” is an ordering of a partial result
on one of the following:
• a join attribute, or
• a group-by attribute, or
• an order-by attribute

§ For each subquery compute multiple optimal plans:
one for each interesting order

§ E.g. R(A,B) ⋈ S(A,C) ⋈ T(A,D) ⋈ K(D,E)
• For {R(A,B),S(A,C)} compute two optimal plans:

• Unordered, and ordered by A
• For {R(A,B),T(A,D)} compute three optimal plans:

• Unordered, ordered by A, ordered by D

April 29, 2020 CSE 444 - Spring 2020 6

Today

§ Start discussing transactions

§ Lab3 – most difficult lab!

§ This lecture and next lecture is mostly review from
344, and we will go quickly

§ Later we discuss optimistic concurrency control

April 29, 2020 CSE 444 - Spring 2020 7

Motivating Example

8

Would like to treat
each group of

instructions as a unit

Client 1:
UPDATE Budget
SET money=money-100
WHERE pid = 1

UPDATE Budget
SET money=money+60
WHERE pid = 2

UPDATE Budget
SET money=money+40
WHERE pid = 3

Client 2:
SELECT sum(money)
FROM Budget

April 29, 2020 CSE 444 - Spring 2020

Transaction

START TRANSACTION

[SQL statements]

COMMIT or ROLLBACK (=ABORT)

In ad-hoc SQL: each statement = one transaction
This is referred to as autocommit

Definition: a transaction is a sequence of updates to the
database with the property that either all complete,
or none completes (all-or-nothing).

9

May be omitted if
autocommit is off:

first SQL query
starts txn

April 29, 2020 CSE 444 - Spring 2020

Motivating Example

With autocommit and
without START TRANSACTION,
each SQL command
is a transaction

START TRANSACTION
UPDATE Budget
SET money=money-100
WHERE pid = 1

UPDATE Budget
SET money=money+60
WHERE pid = 2

UPDATE Budget
SET money=money+40
WHERE pid = 3

COMMIT (or ROLLBACK)

SELECT sum(money)
FROM Budget

CSE 444 - Spring 2020 10April 29, 2020

CSE 444 - Spring 2020 11

ROLLBACK

§ If the app gets to a place where it can’t
complete the transaction successfully, it can
execute ROLLBACK

§ This causes the system to “abort” the transaction
• Database returns to a state without any of the

changes made by the transaction

§ Several reasons: user, application, system

April 29, 2020

CSE 444 - Spring 2020 12

Transactions

§Major component of database systems
§Critical for most applications; arguably more so

than SQL

§ Turing awards to database researchers:
• Charles Bachman 1973
• Edgar Codd 1981 for inventing relational dbs
• Jim Gray 1998 for inventing transactions
• Mike Stonebraker 2015 for INGRES and Postgres

April 29, 2020

CSE 444 - Spring 2020 13

ACID Properties

§Atomicity: Either all changes performed by
transaction occur or none occurs

§Consistency: A transaction as a whole does not
violate integrity constraints

§ Isolation: Transactions appear to execute one
after the other in sequence

§Durability: If a transaction commits, its changes
will survive failures

April 29, 2020

CSE 444 - Spring 2020 14

What Could Go Wrong?

Why is it hard to provide ACID properties?

§Concurrent operations
• Isolation problems
• We saw one example earlier

§ Failures can occur at any time
• Atomicity and durability problems
• Later lectures

§ Transaction may need to abort

April 29, 2020

Modeling the Database

§We assume that the database is a set of elements

X1, X2, …, Xn

§An element can be a record, or a block, or a
relation; think of it as being a record

§A transaction performs these actions (any order):
• reads elements
• computes
• writes elements

April 29, 2020 CSE 444 - Spring 2020 15

Schedules

CSE 444 - Spring 2020 16

A schedule is a sequence
of interleaved actions
from all transactions

April 29, 2020

Example

CSE 444 - Spring 2020 17

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

A and B are elements
in the database

t and s are variables
in tx source code

April 29, 2020

A Serial Schedule

CSE 444 - Spring 2020 18

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

A = 2
B = 2

A = 102
B = 102

A = 204
B = 204

April 29, 2020

A Serial Schedule

CSE 444 - Spring 2020 19

T1 T2
READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

A = 2
B = 2

A = 4
B = 4

A = 104
B = 104

April 29, 2020

Serializable Schedule

CSE 444 - Spring 2020 20

A schedule is serializable if it is
equivalent to a serial schedule

April 29, 2020

A Serializable Schedule

CSE 444 - Spring 2020 21

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

A = 2
B = 2

A = 102
B = 2

A = 204
B = 2

A = 204
B = 102

A = 204
B = 204

April 29, 2020

A Non-Serializable Schedule

CSE 444 - Spring 2020 22

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

April 29, 2020

A = 2
B = 2

A = 102
B = 2

A = 204
B = 2

A = 204
B = 4

A = 204
B = 104

Serializable Schedules

§ The role of the scheduler is to ensure that the
schedule is serializable

CSE 444 - Spring 2020 23

Q: Why not run only serial schedules ?
I.e. run one transaction after the other ?

April 29, 2020

Serializable Schedules

§ The role of the scheduler is to ensure that the
schedule is serializable

CSE 444 - Spring 2020 24

Q: Why not run only serial schedules ?
I.e. run one transaction after the other ?

A: Because of very poor throughput due to disk latency.

Lesson: main memory databases may schedule TXNs serially

April 29, 2020

Still Serializable, but…

CSE 444 - Spring 2020 25

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s + 200
WRITE(A,s)
READ(B,s)
s := s + 200
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

…we don’t expect the scheduler to schedule this

Schedule is serializable
because t=t+100 and
s=s+200 commute

April 29, 2020

To Be Practical

§Assume worst case updates:
• Assume cannot commute actions done by transactions

§ Therefore, we only care about reads and writes
• Transaction = sequence of R(A)’s and W(A)’s

CSE 444 - Spring 2020 26

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

April 29, 2020

Conflicts

§Write-Read – WR
§Read-Write – RW
§Write-Write – WW

CSE 444 - Spring 2020 27April 29, 2020

Conflict Serializability

CSE 444 - Spring 2020 28

Conflicts:

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)

April 29, 2020

Conflict Serializability

§ Every conflict-serializable schedule is serializable
§ The converse is not true in general

CSE 444 - Spring 2020 29

Definition A schedule is conflict serializable
if it can be transformed into a serial
schedule by a series of swappings
of adjacent non-conflicting actions

April 29, 2020

Conflict Serializability

CSE 444 - Spring 2020 30

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

April 29, 2020

Conflict Serializability

CSE 444 - Spring 2020 31

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

April 29, 2020

Conflict Serializability

CSE 444 - Spring 2020 32

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

April 29, 2020

Conflict Serializability

CSE 444 - Spring 2020 33

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

April 29, 2020

Conflict Serializability

CSE 444 - Spring 2020 34

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

April 29, 2020

Conflict Serializability

CSE 444 - Spring 2020 35

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

April 29, 2020

Testing for Conflict-Serializability

Precedence graph:
• A node for each transaction Ti,
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

• No edge for actions in the same transaction

§ The schedule is serializable iff the precedence
graph is acyclic

CSE 444 - Spring 2020 36April 29, 2020

Example 1

CSE 444 - Spring 2020 37

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

April 29, 2020

Example 1

CSE 444 - Spring 2020 38

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B)

April 29, 2020

Example 1

CSE 444 - Spring 2020 39

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B)

April 29, 2020

Example 1

CSE 444 - Spring 2020 40

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r1(B) No edge because
no conflict (A != B)

April 29, 2020

Example 1

CSE 444 - Spring 2020 41

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w2(A)

April 29, 2020

Example 1

CSE 444 - Spring 2020 42

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w2(A) No edge because
same txn (2)

April 29, 2020

Example 1

CSE 444 - Spring 2020 43

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r3(A) ?

April 29, 2020

Example 1

CSE 444 - Spring 2020 44

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w1(B) ?

April 29, 2020

Example 1

CSE 444 - Spring 2020 45

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) ?

April 29, 2020

Example 1

CSE 444 - Spring 2020 46

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) Edge! Conflict from
T2 to T3

April 29, 2020

Example 1

CSE 444 - Spring 2020 47

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) w3(A) Edge! Conflict from
T2 to T3

A

April 29, 2020

Example 1

CSE 444 - Spring 2020 48

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

r2(A) r2(B) ?

AAnd so on until compared every pair of actions…

April 29, 2020

Example 1

CSE 444 - Spring 2020 49

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3
More edges, but repeats of the same directed edge
not necessary

AB

April 29, 2020

Example 1

CSE 444 - Spring 2020 50

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB

April 29, 2020

Example 2

CSE 444 - Spring 2020 51

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

April 29, 2020

Example 2

CSE 444 - Spring 2020 52

1 2 3
A

B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

April 29, 2020

Example 2

CSE 444 - Spring 2020 53

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

April 29, 2020

View Equivalence

§A serializable schedule need not be conflict
serializable, even under the “worst case update”
assumption

CSE 444 - Spring 2020 54

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ?

April 29, 2020

View Equivalence

§A serializable schedule need not be conflict
serializable, even under the “worst case update”
assumption

CSE 444 - Spring 2020 55

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ? No…

April 29, 2020

1 2 3
Y

X

Y

View Equivalence

§A serializable schedule need not be conflict
serializable, even under the “worst case update”
assumption

CSE 444 - Spring 2020 56

w1(X); w1(Y); w2(X); w2(Y); w3(Y);

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Lost write

Equivalent, but not conflict-equivalent
April 29, 2020

1 2 3
Y

X

Y

View Equivalence

CSE 444 - Spring 2020 57

T1 T2 T3
W1(X)

W2(X)
W2(Y)
CO2

W1(Y)
CO1

W3(Y)
CO3

T1 T2 T3
W1(X)
W1(Y)
CO1

W2(X)
W2(Y)
CO2

W3(Y)
CO3

Lost

Serializable, but not conflict serializable
April 29, 2020

View Equivalence

Two schedules S, S’ are view equivalent if:
• If T reads an initial value of A in S,

then T reads the initial value of A in S’

• If T reads a value of A written by T’ in S,
then T reads a value of A written by T’ in S’

• If T writes the final value of A in S,
then T writes the final value of A in S’

CSE 444 - Spring 2020 58April 29, 2020

View-Serializability

A schedule is view serializable if it is view
equivalent to a serial schedule

Remark:
• If a schedule is conflict serializable,

then it is also view serializable
• But not vice versa

CSE 444 - Spring 2020 59April 29, 2020

Schedules with Aborted Transactions

§When a transaction aborts, the recovery manager
undoes its updates

§But some of its updates may have affected other
transactions !

CSE 444 - Spring 2020 60April 29, 2020

Schedules with Aborted Transactions

CSE 444 - Spring 2020 61

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

What’s wrong?

April 29, 2020

Schedules with Aborted Transactions

CSE 444 - Spring 2020 62

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

Cannot abort T1 because cannot undo T2

What’s wrong?

April 29, 2020

Recoverable Schedules

A schedule is recoverable if:
• It is conflict-serializable, and
• Whenever a transaction T commits, all

transactions that have written elements read by T
have already committed

CSE 444 - Spring 2020 63April 29, 2020

Recoverable Schedules

A schedule is recoverable if:
• It is conflict-serializable, and
• Whenever a transaction T commits, all

transactions that have written elements read by T
have already committed

CSE 444 - Spring 2020 64April 29, 2020

Recoverable Schedules

65

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit

Nonrecoverable Recoverable
CSE 444 - Spring 2020April 29, 2020

Recoverable Schedules

66

T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

CSE 444 - Spring 2020
How do we recover ?

April 29, 2020

Recoverable Schedules

67

T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

CSE 444 - Spring 2020
How do we recover ?

April 29, 2020

Abort

Recoverable Schedules

68

T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

CSE 444 - Spring 2020
How do we recover ?

April 29, 2020

Abort

Abort

Recoverable Schedules

69

T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

CSE 444 - Spring 2020
How do we recover ?

April 29, 2020

Abort

Abort

Abort

Cascading Aborts

§ If a transaction T aborts, then we need to abort any
other transaction T’ that has read an element
written by T

§A schedule avoids cascading aborts if whenever a
transaction reads an element, the transaction that
has last written it has already committed.

CSE 444 - Spring 2020 70

We base our locking scheme on this rule!

April 29, 2020

Avoiding Cascading Aborts

71

T1 T2
R(A)
W(A)
Commit

R(A)
W(A)
R(B)
W(B)
. . .

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

. . .
. . .

CSE 444 - Spring 2020

Without cascading abortsWith cascading aborts

April 29, 2020

Review of Schedules
Serializability

§Serial
§Serializable
§Conflict serializable
§View serializable

Recoverability

§Recoverable
§Avoids cascading

deletes

CSE 444 - Spring 2020 72April 29, 2020

Scheduler

§ The scheduler:
§Module that schedules the transaction’s actions,

ensuring serializability

§ Two main approaches
• Pessimistic: locks
• Optimistic: timestamps, multi-version, validation

CSE 444 - Spring 2020 73April 29, 2020

