

Database System Internals

Query Optimization (part 4)

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

Announcements

- Labl is graded and the feedback is pushed
- HW2 due tonight
- Lab2 due on Friday
- Quiz next Wednesday (May 6)

Where We Are

Three components:

- Cost/cardinality estimation
- Search space
- Algebraic laws \leftarrow we are finishing this...
- Restricting the query plans $\leftarrow \ldots$ and this next
- Search algorithm \leqslant then we'll discuss this

Laws Involving Constraints

- These are laws that hold only under constraints
- Most common: redundant key foreign-key join

Laws Involving Constraints

Supply(sid, pno, discount)
Part(pno, pname, category, price)
select x.sid, x.pno, x.discount from Supply x, Part y where x.pno = y.pno

Laws Involving Constraints

```
Supply(sid, pno, discount)
Part(pno, pname, category, price)
```

select x.sid, x.pno, x.discount from Supply x, Part y
where x.pno = y.pno
Three constraints are needed
select x.sid, x.pno, x.disount from Supply x

Laws Involving Constraints

```
Supply(sid, pno, discount)
Part(pno, pname, category, price)
```

select x.sid, x.pno, x.discount from Supply x, Part y where $x . p n o=y . p n o$

Three constraints are needed 1. Part.pno is a key
2. Supply.pno is a foreign key 3. Supply.pno IS NOT NULL
select x.sid, x.pno, x.disount from Supply x

Discussion

- When implemented in the optimizer, algebraic laws are called optimization rules
- More rules \rightarrow larger search space \rightarrow better plan
- Less rules \rightarrow faster optimization \rightarrow less good plan
- There is no "complete set" of rules for SQL; Commercial optimizers typically use 5-600 rules, constantly adding rules in response to customer's needs

Restricting the Shape of the Query Plans

- The number of query plans is huge
- Optimizers often restrict them:
- Restrict the types of trees
- Restrict cartesian products

Types of Join Trees

- Bushy:

Types of Join Trees

- Linear (aka zig-zag):

Types of Join Trees

- Right deep:

Types of Join Trees

- Left deep:
- Work well with existing join algos
- Nested-loop and hash-join
- Facilitate pipelining

Avoid Cartesian Products

- Cartesian products are usually inefficient
- Most query optimizers avoid them

Avoid Cartesian Products

```
Supplier(sid,name,discount,city)
Supply(sid, pno)
Part(pno, pname, price)
```


select *

from Supplier x, Supply y, Part z where x. sid $=y . s i d$ and $y . p n o=z . p n o$ and x.city=‘Seattle’ and z.price=100;

Avoid Cartesian Products

```
Supplier(sid, name,discount,city)
Supply(sid, pno)
Part(pno, pname, price)
```


select *

from Supplier x, Supply y, Part z where x. sid $=y . s i d$ and y.pno $=z . p n o$ and x.city=‘Seattle’ and z.price=100;

Avoid Cartesian Products

select *

from Supplier x, Supply y, Part z where x. sid $=y . s i d$ and $y . p n o=z . p n o$ and x.city=‘Seattle’ and z.price=100;

Query Optimization

Three components:

- Cost/cardinality estimation
- Search space
- Search algorithm \leftarrow rest of this lecture

Two Types of Optimizers

- Heuristic-based optimizers:
- Apply greedily rules that always improve plan
- Typically: push selections down
- Very limited: no longer used today
- Cost-based optimizers:
- Use a cost model to estimate the cost of each plan
- Select the "cheapest" plan
- We discuss these

Approaches to Search Space Enumeration

- Complete plans
- Bottom-up plans
- Top-down plans

Complete Plans

	SELECT*
R(A,B)	FROM R, S, T
S(B,C)	WHERE R.B=S.B and
T(C,D)	S.C=T.C and R.A<40

Answer: No way to do early pruning

Top-down Partial Plans

$$
\begin{aligned}
& \text { R(A,B) } \\
& \text { S(B,C) } \\
& \text { T(C,D) }
\end{aligned}
$$

```
SELECT *
FROM R, S,T
WHERE R.B=S.B and S.C=T.C and R.A<40
```


Bottom-up Partial Plans

$R(A, B)$
$S(B, C)$
$T(C, D)$

SELECT*

FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A <40

Dynamic Programming

Originally proposed in System R [1979]

- Only handles single block queries:

```
SELECT list
FROM R1, .., Rn
WHERE cond}14\mathrm{ AND cond}2\mathrm{ AND . . . AND cond
```

- Some heuristics for search space enumeration:
- Selections down
- Projections up
- Avoid cartesian products

SELECT list

For each subquery $Q \subseteq\{R 1, \ldots, R n\}$ compute:

- $T(Q)=$ the estimated size of Q
- Plan(Q) = a best plan for Q
- $\operatorname{Cost}(Q)=$ the estimated cost of that plan

SELECT list

- Step 1: For each $\left\{\mathrm{R}_{\mathrm{i}}\right\}$ do:
- $T\left(\left\{R_{i}\right\}\right)=T\left(R_{i}\right)$
- Plan $\left(\left\{R_{i}\right\}\right)=$ access method for R_{i}
- $\operatorname{Cost}\left(\left\{R_{i}\right\}\right)=$ cost of access method for R_{i}
- Step 2: For each $Q \subseteq\left\{R_{1}, \ldots, R_{n}\right\}$ of size k do:
- $T(Q)=$ use estimator
- Consider all partitions $Q=Q^{\prime} \cup Q^{\prime \prime}$ compute cost(Plan($\left.\left.Q^{\prime}\right) \bowtie \operatorname{Plan}\left(Q^{\prime \prime}\right)\right)$
- $\operatorname{Cost}(Q)=$ the smallest such cost
- Plan $(Q)=$ the corresponding plan
- Note
- If we restrict to left-linear trees: $Q^{\prime \prime}=$ single relation
- May want to avoid cartesian products

Dynamic Programming

- Step 3: Return Plan $\left(\left\{\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}\right\}\right)$

Example

WHERE cond ${ }_{1}$ AND cond 2 AND . . .
$-R \bowtie S \bowtie T \bowtie U$

- Assumptions:

$$
\begin{aligned}
& \mathrm{T}(\mathrm{R})=2000 \\
& \mathrm{~T}(\mathrm{~S})=5000 \\
& \mathrm{~T}(\mathrm{~T})=3000 \\
& \mathrm{~T}(\mathrm{U})=1000 \\
& \hline
\end{aligned}
$$

- Every join selectivity is 0.001

Example

$T(R)=2000$
$T(S)=5000$
$T(T)=3000$
$T(U)=1000$

Assume
$B(.)=.T(.) /$.

Join selectivity is 0.001

Subquery	T	Plan	Cost
R	2000		
S	5000		
T	3000		
RS	1000		
RT			
ST			
SU			
TU			
RST			
RSU			
RTU			
RTU			

Example

$T(R)=2000$
$T(S)=5000$
$T(T)=3000$
$T(U)=1000$

Assume
$\mathrm{B}(.)=.\mathrm{T}(.) /$.

Join selectivity is 0.001

Subquery	T	Plan	Cost
R	2000		
S	5000		
T	3000		
RS	1000		
RT	10000		
ST	6000		
SU	15000		
TU	5000		
RST	3000		
RTU	10000		

Example

$T(R)=2000$
$T(S)=5000$
$T(T)=3000$
$T(U)=1000$

Assume
$\mathrm{B}(.)=.\mathrm{T}(.) /$.

Join selectivity is 0.001

Subquery	T	Plan	Cost
R	2000	Clustered index scan R.A	200
S	5000		
T	3000		
U	1000		
RS	10000		
RT	6000		
$R \mathrm{U}$	2000		
ST	15000		
SU	5000		
TU	3000		
RST	30000		
RSU	10000		
RTU	6000		
STU	15000		
RSTU	30000		

Example

$T(R)=2000$
$T(S)=5000$
$T(T)=3000$
$T(U)=1000$

Assume
$\mathrm{B}(.)=.\mathrm{T}(.) /$.

Join selectivity is 0.001

Subquery	T	Plan	Cost
R	2000	Clustered index scan R.A	200
S	5000	Table scan	500
T	3000		
U	1000		
RS	10000		
RT	6000		
RU	2000		
ST	15000		
SU	5000		
TU	3000		
RST	30000		
RSU	10000		
RTU	6000		
STU	15000		
RSTU	30000		

Example

$T(R)=2000$
$T(S)=5000$
$T(T)=3000$
$T(U)=1000$

Assume
$\mathrm{B}(.)=.\mathrm{T}(.) /$.

Join selectivity is 0.001

Subquery	T	Plan	Cost
R	2000	Clustered index scan R.A	200
S	5000	Table scan	500
T	3000	Table scan	300
U	1000	Unclustered index scan U.F	1000
RS	10000		
RT	6000		
RU	2000		
ST	15000		
SU	5000		
TU	3000		
RST	30000		
RSU	10000		
RTU	6000		
STU	15000		
RSTU	30000		

Example

$T(R)=2000$
$T(S)=5000$
$T(T)=3000$
$T(U)=1000$

Assume
$\mathrm{B}(.)=.\mathrm{T}(.) /$.

Join selectivity is 0.001

Subquery	T	Plan	Cost
R	2000	Clustered index scan R.A	200
S	5000	Table scan	500
T	3000	Table scan	300
U	1000	Unclustered index scan U.F	1000
RS	10000	$R \bowtie$ S nested loop join	\ldots
RT	6000		
RU	2000		
ST	15000		
SU	5000		
TU	3000		
RST	30000		
RSU	10000		
RTU	6000		
STU	15000		
RSTU	30000		

Example

$T(R)=2000$
$T(S)=5000$
$T(T)=3000$
$T(U)=1000$

Assume
$\mathrm{B}(.)=.\mathrm{T}(.) /$.

Join selectivity is 0.001

Subquery	T	Plan	Cost
R	2000	Clustered index scan R.A	200
S	5000	Table scan	500
T	3000	Table scan	300
U	1000	Unclustered index scan U.F	1000
RS	10000	R \bowtie S nested loop join	\ldots
RT	6000	R \bowtie T index join	\ldots
RU	2000		
ST	15000		
SU	5000		
TU	3000		
RST	30000		
RTU	6000		
STU	15000		
RSTU	30000		

Example

$T(R)=2000$
$T(S)=5000$
$T(T)=3000$
$T(U)=1000$

Assume
$\mathrm{B}(.)=.\mathrm{T}(.) /$.

Join selectivity is 0.001

Subquery	T	Plan	Cost
R	2000	Clustered index scan R.A	200
S	5000	Table scan	500
T	3000	Table scan	300
U	1000	Unclustered index scan U.F	1000
RS	10000	$\mathrm{R} \bowtie \mathrm{S}$ nested loop join	\ldots
RT	6000	$\mathrm{R} \bowtie$ T index join	\ldots
RU	2000	$\mathrm{R} \bowtie \mathrm{U}$ index join	
ST	15000	$\mathrm{~S} \bowtie \mathrm{~T}$ hash join	
SU	5000		\ldots
TU	3000		
RST	30000		
RSU	10000		
STU	6000	15000	
RSTU	30000		

Example

$T(R)=2000$
$T(S)=5000$
$T(T)=3000$
$T(U)=1000$

Assume
$\mathrm{B}(.)=.\mathrm{T}(.) /$.

Join selectivity is 0.001

Subquery	T	Plan	Cost
R	2000	Clustered index scan R.A	200
S	5000	Table scan	500
T	3000	Table scan	300
U	1000	Unclustered index scan U.F	1000
RS	10000	$R \bowtie S$ nested loop join	\ldots
RT	6000	$R \bowtie$ T index join	\ldots
RU	2000	$R \bowtie$ U index join	
ST	15000	$S \bowtie T$ hash join	
SU	5000	\ldots	\ldots
TU	3000		\ldots
RST	30000	(RT) $\bowtie S$ hash join	\ldots
RTU	6000	(SU) \bowtie R merge join	
STU	15000		
RSTU	30000		

Example

$T(R)=2000$
$T(S)=5000$
$T(T)=3000$
$T(U)=1000$

Assume
$\mathrm{B}(.)=.\mathrm{T}(.) /$.

Join selectivity is 0.001

Subquery	T	Plan	Cost
R	2000	Clustered index scan R.A	200
S	5000	Table scan	500
T	3000	Table scan	300
U	1000	Unclustered index scan U.F	1000
RS	10000	$R \bowtie S$ nested loop join	\ldots
RT	6000	$R \bowtie$ T index join	\ldots
RU	2000	$R \bowtie$ U index join	
ST	15000	$S \bowtie T$ hash join	
SU	5000	\ldots	\ldots
RST	3000		\ldots
RSU	10000	(ST) $\bowtie S$ hash join $\bowtie R$ merge join	
RTU	6000		\ldots
STU	15000		
RSTU	30000	$(R T) \bowtie(S U)$ hash join	\ldots

Discussion

- For the subset $\{R S\}$, need to consider both

$R \bowtie S$ and $S \bowtie R$

Because the cost may be different!

- When computing the cheapest plan for

$$
(Q) \bowtie R
$$

we may consider new access methods for R, e.g. an index look-up that makes sense only in the context of the join

How Many Plans Are There?

A bit of math...

- The n 'th Catalan number = number of ways to write n pairs of parentheses

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

- n pairs of parentheses go around $\mathrm{n}+1$ items:

How Many Plans Are There?

A bit of math...

- The n^{\prime} th Catalan number = number of ways to write n pairs of parentheses

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

- n pairs of parentheses go around $\mathrm{n}+1$ items:
- 3 items: (AB$) \mathrm{C}, \mathrm{A}(\mathrm{BC}) \quad C_{2}=\frac{1}{3}\binom{4}{2}=2$

How Many Plans Are There?

A bit of math...

- The n^{\prime} th Catalan number = number of ways to write n pairs of parentheses

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

- n pairs of parentheses go around $\mathrm{n}+1$ items:
- 3 items: (AB$) \mathrm{C}, \mathrm{A}(\mathrm{BC}) \quad C_{2}=\frac{1}{3}\binom{4}{2}=2$
- 4 items: ($(A B) C) D,(A B)(C D)$, ($A(B C)) D, A((B C) D)$,

$$
\mathrm{A}(\mathrm{~B}(\mathrm{CD})) \quad C_{3}=\frac{1}{4}\binom{6}{3}=5
$$

How Many Plans Are There?

- The number of plans with n relations $R_{1}, R_{2}, \ldots, R_{n}$ is

$$
P_{n}=n!C_{n-1}=\frac{n!}{n}\binom{2(n-1)}{n-1}=\frac{(2(n-1))!}{(n-1)!}
$$

- Reason: any parenthesis times any permutation
- E.g. $\mathbf{n}=4: \quad P_{4}=6!/ 3!=120$
- (($\left.\left.R_{1} R_{2}\right) R_{3}\right) R_{4},\left(\left(R_{1} R_{2}\right) R_{4}\right) R_{3},\left(\left(R_{1} R_{3}\right) R_{2}\right) R_{4},\left(\left(R_{1} R_{3}\right) R_{4}\right) R_{2} \ldots$
- $\left(R_{1} R_{2}\right)\left(R_{3} R_{4}\right),\left(R_{1} R_{2}\right)\left(R_{4} R_{3}\right), \ldots$
- $\left(R_{1}\left(R_{2} R_{3}\right)\right) R_{4},\left(R_{1}\left(R_{2} R_{4}\right)\right) R_{3}, \ldots$
- ...

Discussion

Given a query with n relations $\mathrm{R} 1, \ldots, \mathrm{Rn}$

- How many plans are there?
- A: $(2(n-1))!/(n-1)!=n(n+1)(n+2) \ldots(2 n-3)(2 n-2)$
- How many entries do we have in the dynamic programming table?
- For each entry, how many alternative plans do we need to inspect?

Discussion

Given a query with n relations R1, ..., Rn

- How many plans are there?
- A: $(2(n-1))!/(n-1)!=n(n+1)(n+2) \ldots(2 n-3)(2 n-2)$
- How many entries do we have in the dynamic programming table?
- A: $2^{\text {n }}-1$
- For each entry, how many alternative plans do we need to inspect?
- A: for each entry with k tables, examine $2^{k}-2$ plans

Reducing the Search Space

- Left-linear trees
- No cartesian products

SELECT list

Given a query with n relations R1, ..., Rn Assume left-linear plans only
 - How many plans are there?

- How many entries do we have in the dynamic programming table?
- For each entry, how many alternative plans do we need to inspect?

Discussion

Given a query with n relations R1, ..., Rn Assume left-linear plans only

- How many plans are there?
- $A: n!=1 * 2 * 3^{*}$... ${ }^{*} n$
- How many entries do we have in the dynamic programming table?
- A: $2^{\mathrm{n}}-1$
- For each entry, how many alternative plans do we need to inspect?
- A: for each entry with k tables, examine k plan

Reducing the Search Space

- Left-linear trees
- No cartesian products

Chain join: $R_{1}\left(A_{0}, A_{1}\right) \bowtie R_{2}\left(A_{1}, A_{2}\right) \bowtie \ldots \bowtie R_{n}\left(A_{n-1}, A_{n}\right)$ Assume left-linear plans without cartesian product - How many plans are there?

- How many entries do we have in the dynamic programming table?
- For each entry, how many alternative plans do we need to inspect?

SELECT list

Chain join: $R_{1}\left(A_{0}, A_{1}\right) \bowtie R_{2}\left(A_{1}, A_{2}\right) \bowtie \ldots \bowtie R_{n}\left(A_{n-1}, A_{n}\right)$ Assume left-linear plans without cartesian product - How many plans are there?

- A: 2^{n-1}
- How many entries do we have in the dynamic programming table?
- $A: n(n-1) / 2$
- For each entry, how many alternative plans do we need to inspect?
- A: for each entry with k tables, examine 2 plans

