
1

Introducing Parallel DBMSs

February 18, 2022

Introduction to Data Management

Parallel Processing

Announcements

§Midterm quiz released
• Due Tuesday night (no late days)

Parallel Processing 2February 18, 2022

Where We Are Headed Next

§Scaling the execution of a query
• Parallel DBMS
• MapReduce
• Spark

Parallel Processing 3February 18, 2022

Parallel Processing 4February 18, 2022

How to Scale the DBMS?

§Can easily replicate the web servers and the
application servers

§We cannot so easily replicate the database
servers, because the database is unique

§We need to design ways to scale up the DBMS

Parallel Processing 5February 18, 2022

Building Our Parallel DBMS

Parallel Processing 8February 18, 2022

Data model? Relational
(familiar!)

Building Our Parallel DBMS

Parallel Processing 9February 18, 2022

Data model? Relational
(familiar!)

Scaleup goal?

Scaling Transactions Per Second

§OLTP: Transactions per second
“Online Transaction Processing”

§Amazon
§Facebook
§Twitter
§… your favorite Internet application…

§Goal is to increase transaction throughput

Parallel Processing 10February 18, 2022

Scaling Single Query Response Time

§OLAP: Query response time
“Online Analytical Processing”

§Entire parallel system answers one query

§Goal is to improve query runtime

§Use case is analysis of massive datasets

Parallel Processing 11February 18, 2022

Big Data

Volume alone is not an issue

§Relational databases do parallelize easily;
techniques available from the 80’s

• Data partitioning
• Parallel query processing

§SQL is embarrassingly parallel
• We will learn how to do this!

Parallel Processing 12February 18, 2022

Big Data

New workloads are an issue

§Big volumes, small analytics
• OLAP queries: join + group-by + aggregate
• Can be handled by today’s RDBMSs

§Big volumes, big analytics
• More complex Machine Learning, e.g. click prediction,

topic modeling, SVM, k-means
• Requires innovation – Active research area

Parallel Processing 13February 18, 2022

Building Our Parallel DBMS

Parallel Processing 14February 18, 2022

Data model? Relational

Scaleup goal? OLAP

Building Our Parallel DBMS

Parallel Processing 15February 18, 2022

Data model? Relational

Scaleup goal? OLAP

Architecture?

Shared-Memory Architecture

Parallel Processing 16

Global Memory

Interconnection Network
(Motherboard)

D D D

P P P

§ Shared main memory and
disks

§ Your laptop or desktop
uses this architecture

§ Expensive to scale
§ Easiest to implement on

February 18, 2022

Shared-Disk Architecture

February 18, 2022 Parallel Processing 17

Interconnection Network
(SAN + SCSI)

D D D

P P P

M M M

§ Only shared disks
§ No contention for memory

and high availability
§ Typically 1-10 machines

Shared-Nothing Architecture
§ Uses cheap, commodity

hardware
§ No contention for memory

and high availability
§ Theoretically can scale

infinitely
§ Hardest to implement on

Parallel Processing 18

Interconnection Network
(TCP)

D D D

P P P

M M M

February 18, 2022

Building Our Parallel DBMS

Parallel Processing 19February 18, 2022

Data model? Relational

Scaleup goal? OLAP

Architecture? Shared-Nothing

Shared-Nothing Execution Basics

Parallel Processing 20February 18, 2022

§Multiple DBMS instances (= processes) also called
“nodes” execute on machines in a cluster

• One node plays role of the coordinator
• Other nodes play role of workers

§Workers execute queries
• Typically all workers execute the same plan
• Workers can execute multiple queries at the same time

Node 1 Node 2 Node 3

Shared-Nothing Database

We will assume a system that consists of multiple
commodity machines on a common network

New problem: Where does the data go?

Parallel Processing 21February 18, 2022

Node 1 Node 2 Node 3

Shared-Nothing Database

We will assume a system that consists of multiple
commodity machines on a common network

New problem: Where does the data go?

The answer will influence our execution techniques

Parallel Processing 22February 18, 2022

Node 1 Node 2 Node 3

Option 1: Unpartitioned Table

§Entire table on just one node in the system

§Will bottleneck any query we need to run in parallel

§We choose partitioning scheme to divide rows
among machines

Parallel Processing 23February 18, 2022

Option 2: Block Partitioning
Tuples are horizontally (row) partitioned by raw size
with no ordering considered

Parallel Processing 24

… … …

B(R) = K
B(R2) = K/N

B(RN) = K/N

B(R1) = K/N

N nodes

February 18, 2022

Option 3: Range Partitioning

Node contains tuples in chosen attribute ranges

Parallel Processing 25

A

… …

A

A

A

…

R2, v1 < A <= v2

RN, vN < A < inf

R1, -inf < A <= v1

N nodes

February 18, 2022

Option 4: Hash Partitioning

Node contains tuples with chosen attribute hashes

Parallel Processing 26

A

… …

A

A

A

…

R2, 2 = h(A)%N

RN, 0 = h(A)%N

R1, 1 = h(A)%N

N nodes

h(A)

February 18, 2022

Skew: The Justin Bieber Effect

§Hashing data to nodes is very good when the
attribute chosen better approximates a uniform
distribution

§Keep in mind: Certain nodes will become
bottlenecks if a poorly chosen attribute is hashed

Parallel Processing 27February 18, 2022

Parallel Selection

Parallel Processing 28

Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

SELECT *
FROM R
WHERE A = 2

February 18, 2022

Parallel Selection

Parallel Processing 29

Node 1 Node 2 Node 3

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

SELECT *
FROM R
WHERE A = 2

𝜎"#$ 𝜎"#$ 𝜎"#$
A …
2 …

A …
2 …

A …

February 18, 2022

Implicit Union

Parallel Processing 30

Parallel query plans implicitly union at the end

Output

Node 1 Node 2 Node 3

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

𝜎"#$ 𝜎"#$ 𝜎"#$

February 18, 2022

Parallel Selection

Data-parallel!

Parallel Processing 31

Node 1 Node 2 Node 3

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

A …
2 …

A …
2 …

A …

SELECT *
FROM R
WHERE A = 2

𝜎"#$ 𝜎"#$ 𝜎"#$

February 18, 2022

Parallel Selection

Compute 𝜎A=v(R), or 𝜎v1<A<v2(R)

§On a conventional database: cost = B(R)

Q: What is the cost on each node for a database
with N nodes ?

A:

32Parallel ProcessingFebruary 18, 2022

Parallel Selection

Compute 𝜎A=v(R), or 𝜎v1<A<v2(R)

§On a conventional database: cost = B(R)

Q: What is the cost on each node for a database
with N nodes ?

A: B(R) / N block reads on each node

33Parallel ProcessingFebruary 18, 2022

Parallel Selection

What if this query
is not data-parallel?

Parallel Processing 34

Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

SELECT *
FROM R

……

February 18, 2022

Partitioned Aggregation

Parallel Processing 35

Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

𝛾&." 𝛾&."𝛾&."

SELECT *
FROM R
GROUP BY R.A

February 18, 2022

Partitioned Aggregation

Parallel Processing 36

Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

𝛾&." 𝛾&."𝛾&."

SELECT *
FROM R
GROUP BY R.A

A …
1 …
1 …

A …
2 …
2 …

A …
3 …
3 …

February 18, 2022

Partitioned Aggregation

1. Hash shuffle tuples

Parallel Processing 37

Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

𝛾&." 𝛾&."𝛾&."

SELECT *
FROM R
GROUP BY R.A

A …
1 …
1 …

A …
2 …
2 …

A …
3 …
3 …

February 18, 2022

Partitioned Aggregation

1. Hash shuffle tuples

Parallel Processing 38

Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

𝛾&." 𝛾&."𝛾&."

SELECT *
FROM R
GROUP BY R.A

A …
1 …
1 …

A …
2 …
2 …

A …
3 …
3 …

February 18, 2022

Partitioned Aggregation

1. Hash shuffle tuples
2. Local aggregation

Parallel Processing 39

Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

𝛾&." 𝛾&."𝛾&."

SELECT *
FROM R
GROUP BY R.A

A …
1 …
1 …

A …
2 …
2 …

A …
3 …
3 …

February 18, 2022

Parallel Query Evaluation
New operator: Shuffle
§Serves to re-shuffle data between processes

• Handles data routing, buffering, and flow control

§Not relational algebra, but special operator in
query plans

40Parallel ProcessingFebruary 18, 2022

Parallel Query Execution

Parallel Processing 41February 18, 2022

Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes

Parallel Processing 42

Assume:
R and S are block partitioned
SELECT *
FROM R, S
WHERE R.A = S.A

⋈&."#)." ⋈&."#)." ⋈&."#)."

Node 1 Node 2 Node 3
R S R S R S

February 18, 2022

Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes

Parallel Processing 43

Node 1 Node 2 Node 3

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

Assume:
R and S are block partitioned
SELECT *
FROM R, S
WHERE R.A = S.A

⋈&."#)." ⋈&."#)." ⋈&."#)."

R S R S R S

February 18, 2022

Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes

Parallel Processing 44

Node 1 Node 2 Node 3

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

Assume:
R and S are block partitioned

hash S.A hash S.A hash S.A

SELECT *
FROM R, S
WHERE R.A = S.A

⋈&."#)." ⋈&."#)." ⋈&."#)."

R S R S R S

February 18, 2022

Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes
2. Local join

Parallel Processing 45

Node 1 Node 2 Node 3

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

Assume:
R and S are block partitioned

hash S.A hash S.A hash S.A

SELECT *
FROM R, S
WHERE R.A = S.A

⋈&."#)." ⋈&."#)." ⋈&."#)."

R S R S R S

February 18, 2022

Data: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) ⋈ S(K2,B,C)

46

K1 B
1 20
2 50

K2 B
101 50
102 50

K1 B
3 20
4 20

K2 B
201 20
202 50

R1 S1 R2 S2

K1 B
1 20
3 20
4 20

K2 B
201 20

K1 B
2 50

K2 B
101 50
102 50
202 50

R1’ S1’ R2’ S2’

M1 M2

M1 M2

Shuffle

⋈ ⋈

Partition

Local
Join

Join on R.B = S.B

Parallel Processing
February 18, 2022

σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

47
Parallel Processing

February 18, 2022

Multiple Shuffles

Summary

§With one new operator, we’ve made an
OLAP-ready parallel DBMS!

February 18, 2022 Parallel Processing 48

Speedup and Scaleup

§Consider:
• Query: 𝛾A,sum(C)(R)
• Runtime: dominated by reading chunks from disk

§ If we double the number of nodes P, what is the
new running time?

§ If we double both P and the size of R, what is the
new running time?

Parallel Processing 49February 18, 2022

Speedup and Scaleup

§Consider:
• Query: 𝛾A,sum(C)(R)
• Runtime: dominated by reading chunks from disk

§ If we double the number of nodes P, what is the
new running time?

• Half (each server holds ½ as many chunks)
§ If we double both P and the size of R, what is the

new running time?

Parallel Processing 50February 18, 2022

Speedup and Scaleup

§Consider:
• Query: 𝛾A,sum(C)(R)
• Runtime: dominated by reading chunks from disk

§ If we double the number of nodes P, what is the
new running time?

• Half (each server holds ½ as many chunks)
§ If we double both P and the size of R, what is the

new running time?
• Same (each server holds the same # of chunks)

Parallel Processing 51February 18, 2022

Basic Parallel GroupBy

Can we do better?
§Sum?
§Count?
§Avg?
§Max?
§Median?

52Parallel ProcessingFebruary 18, 2022

Basic Parallel GroupBy

Can we do better?
§Sum?
§Count?
§Avg?
§Max?
§Median?
YES
§Compute partial aggregates before shuffling

53Parallel Processing

Distributive Algebraic Holistic

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))

avg(B) =
sum(B)/count(B)

median(B)

February 18, 2022

Basic Parallel GroupBy

Can we do better?
§Sum?
§Count?
§Avg?
§Max?
§Median?
YES
§Compute partial aggregates before shuffling

54Parallel Processing

Distributive Algebraic Holistic

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))

avg(B) =
sum(B)/count(B)

median(B)

MapReduce implements this as “Combiners”
February 18, 2022

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

SELECT a, max(b) as topb
FROM R WHERE a > 0
GROUP BY a

Example Query with Group By

55February 18, 2022 Parallel Processing

Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σa>0

scan

g a, max(b)→b

hash on a

g a, max(b)→topb

σa>0

scan

g a, max(b)→b

hash on a

g a, max(b)→topb

σa>0

scan

g a, max(b)→b

hash on a

g a, max(b)→topb

56February 18, 2022 Parallel Processing

Optimization Joins for Small Relations

When joining R and S
§ If |R| >> |S|

• Leave R where it is
• Replicate entire S relation across nodes

§Also called a small join or a broadcast join

Parallel Processing 59February 18, 2022

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

Broadcasting S and T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

60Parallel ProcessingFebruary 18, 2022

Optimization Joins for Small Relations

Some Skew Handling Techniques

Skew:
§Some partitions get more input tuples than others

Reasons:
• Range-partition instead of hash
• Some values are very popular:

• Heavy hitters values; e.g. ‘Justin Bieber’
• Selection before join with different selectivities

§Some partitions generate more output tuples than
others

Parallel Processing 61February 18, 2022

Some Skew Handling Techniques

If using range partition:

§ Ensure each range gets same number of tuples

§ E.g.: {1, 1, 1, 2, 3, 4, 5, 6 } à [1,2] and [3,6]

§ Eq-depth v.s. eq-width histograms

Parallel Processing 62February 18, 2022

Some Skew Handling Techniques

Create more partitions than nodes

§And be smart about scheduling the partitions

§Note: MapReduce uses this technique

Parallel Processing 63February 18, 2022

Some Skew Handling Techniques

Use subset-replicate (a.k.a. “skewedJoin”)
§Given R ⋈A=B S
§Given a heavy hitter value R.A = ‘v’

(i.e. ‘v’ occurs very many times in R)
§Partition R tuples with value ‘v’ across all nodes

e.g. block-partition, or hash on other attributes
§Replicate S tuples with value ‘v’ to all nodes
§R = the build relation
§S = the probe relation

Parallel Processing 64February 18, 2022

Summary of Parallel RDBMS

§Hash shuffle does it all

§ Techniques have been around for decades

§We still get benefits of the relational database!

February 18, 2022 Parallel Processing 65

