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Announcements

§Midterm quiz released
• Due Tuesday night (no late days)
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Where We Are Headed Next

§Scaling the execution of a query
• Parallel DBMS
• MapReduce
• Spark

Parallel Processing 3February 18, 2022



Parallel Processing 4February 18, 2022



How to Scale the DBMS?

§Can easily replicate the web servers and the 
application servers

§We cannot so easily replicate the database 
servers, because the database is unique

§We need to design ways to scale up the DBMS
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Building Our Parallel DBMS
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Data model? Relational
(familiar!)



Building Our Parallel DBMS
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Data model? Relational
(familiar!)

Scaleup goal?       



Scaling Transactions Per Second

§OLTP: Transactions per second
“Online Transaction Processing”

§Amazon
§Facebook
§Twitter
§… your favorite Internet application… 

§Goal is to increase transaction throughput
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Scaling Single Query Response Time

§OLAP: Query response time
“Online Analytical Processing”

§Entire parallel system answers one query

§Goal is to improve query runtime

§Use case is analysis of massive datasets
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Big Data

Volume alone is not an issue

§Relational databases do parallelize easily; 
techniques available from the 80’s

• Data partitioning
• Parallel query processing

§SQL is embarrassingly parallel
• We will learn how to do this!
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Big Data

New workloads are an issue

§Big volumes, small analytics
• OLAP queries: join + group-by + aggregate
• Can be handled by today’s RDBMSs

§Big volumes, big analytics
• More complex Machine Learning, e.g. click prediction, 

topic modeling, SVM, k-means
• Requires innovation – Active research area
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Building Our Parallel DBMS
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Data model? Relational

Scaleup goal?       OLAP



Building Our Parallel DBMS
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Data model? Relational

Scaleup goal?       OLAP

Architecture? 



Shared-Memory Architecture
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Global Memory

Interconnection Network
(Motherboard)

D D D

P P P

§ Shared main memory and 
disks

§ Your laptop or desktop 
uses this architecture

§ Expensive to scale
§ Easiest to implement on
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Shared-Disk Architecture

February 18, 2022 Parallel Processing 17

Interconnection Network
(SAN + SCSI)

D D D

P P P

M M M

§ Only shared disks
§ No contention for memory 

and high availability
§ Typically 1-10 machines



Shared-Nothing Architecture
§ Uses cheap, commodity 

hardware
§ No contention for memory 

and high availability
§ Theoretically can scale 

infinitely
§ Hardest to implement on

Parallel Processing 18

Interconnection Network
(TCP)

D D D

P P P

M M M
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Building Our Parallel DBMS
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Data model? Relational

Scaleup goal?       OLAP

Architecture? Shared-Nothing



Shared-Nothing Execution Basics
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§Multiple DBMS instances (= processes) also called 
“nodes” execute on machines in a cluster

• One node plays role of the coordinator
• Other nodes play role of workers 

§Workers execute queries
• Typically all workers execute the same plan
• Workers can execute multiple queries at the same time

Node 1 Node 2 Node 3



Shared-Nothing Database

We will assume a system that consists of multiple 
commodity machines on a common network

New problem: Where does the data go?
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Shared-Nothing Database

We will assume a system that consists of multiple 
commodity machines on a common network

New problem: Where does the data go?

The answer will influence our execution techniques
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Node 1 Node 2 Node 3



Option 1: Unpartitioned Table

§Entire table on just one node in the system

§Will bottleneck any query we need to run in parallel

§We choose partitioning scheme to divide rows 
among machines
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Option 2: Block Partitioning
Tuples are horizontally (row) partitioned by raw size
with no ordering considered

Parallel Processing 24

… … …

B(R) = K
B(R2) = K/N

B(RN) = K/N

B(R1) = K/N

N nodes
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Option 3: Range Partitioning

Node contains tuples in chosen attribute ranges
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A

… …

A

A

A

…

R2, v1 < A <= v2

RN, vN < A < inf

R1, -inf < A <= v1

N nodes
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Option 4: Hash Partitioning

Node contains tuples with chosen attribute hashes
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A

… …

A

A

A

…

R2, 2 = h(A)%N

RN, 0 = h(A)%N

R1, 1 = h(A)%N

N nodes

h(A)
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Skew: The Justin Bieber Effect

§Hashing data to nodes is very good when the 
attribute chosen better approximates a uniform 
distribution

§Keep in mind: Certain nodes will become 
bottlenecks if a poorly chosen attribute is hashed
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Parallel Selection
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Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

SELECT *
FROM R
WHERE A = 2
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Parallel Selection
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Node 1 Node 2 Node 3

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

SELECT *
FROM R
WHERE A = 2

𝜎"#$ 𝜎"#$ 𝜎"#$
A …
2 …

A …
2 …

A …
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Implicit Union
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Parallel query plans implicitly union at the end

Output

Node 1 Node 2 Node 3

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

𝜎"#$ 𝜎"#$ 𝜎"#$
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Parallel Selection

Data-parallel!
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Node 1 Node 2 Node 3

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

A …
2 …

A …
2 …

A …

SELECT *
FROM R
WHERE A = 2

𝜎"#$ 𝜎"#$ 𝜎"#$
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Parallel Selection

Compute  𝜎A=v(R), or 𝜎v1<A<v2(R)

§On a conventional database: cost = B(R)

Q: What is the cost on each node for a database 
with N nodes ?

A:
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Parallel Selection

Compute  𝜎A=v(R), or 𝜎v1<A<v2(R)

§On a conventional database: cost = B(R)

Q: What is the cost on each node for a database 
with N nodes ?

A: B(R) / N block reads on each node
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Parallel Selection

What if this query
is not data-parallel?
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Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

SELECT *
FROM R

……
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Partitioned Aggregation
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Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

𝛾&." 𝛾&."𝛾&."

SELECT *
FROM R
GROUP BY R.A
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Partitioned Aggregation
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Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

𝛾&." 𝛾&."𝛾&."

SELECT *
FROM R
GROUP BY R.A

A …
1 …
1 …

A …
2 …
2 …

A …
3 …
3 …
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Partitioned Aggregation

1. Hash shuffle tuples
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Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

𝛾&." 𝛾&."𝛾&."

SELECT *
FROM R
GROUP BY R.A

A …
1 …
1 …

A …
2 …
2 …

A …
3 …
3 …
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Partitioned Aggregation

1. Hash shuffle tuples
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Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

𝛾&." 𝛾&."𝛾&."

SELECT *
FROM R
GROUP BY R.A

A …
1 …
1 …

A …
2 …
2 …

A …
3 …
3 …
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Partitioned Aggregation

1. Hash shuffle tuples
2. Local aggregation
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Node 1 Node 2 Node 3

Assume:
R is block partitioned

A …
1 …
2 …

A …
2 …
3 …

A …
3 …
1 …

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

𝛾&." 𝛾&."𝛾&."

SELECT *
FROM R
GROUP BY R.A

A …
1 …
1 …

A …
2 …
2 …

A …
3 …
3 …
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Parallel Query Evaluation
New operator: Shuffle 
§Serves to re-shuffle data between processes

• Handles data routing, buffering, and flow control

§Not relational algebra, but special operator in 
query plans
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Parallel Query Execution
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Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes 
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Assume:
R and S are block partitioned
SELECT *
FROM R, S
WHERE R.A = S.A

⋈&."#)." ⋈&."#)." ⋈&."#)."

Node 1 Node 2 Node 3
R S R S R S
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Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes 

Parallel Processing 43

Node 1 Node 2 Node 3

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

Assume:
R and S are block partitioned
SELECT *
FROM R, S
WHERE R.A = S.A

⋈&."#)." ⋈&."#)." ⋈&."#)."

R S R S R S
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Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes 

Parallel Processing 44

Node 1 Node 2 Node 3

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

Assume:
R and S are block partitioned

hash S.A hash S.A hash S.A

SELECT *
FROM R, S
WHERE R.A = S.A

⋈&."#)." ⋈&."#)." ⋈&."#)."

R S R S R S
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Partitioned Hash Equijoin Algorithm

1. Hash shuffle tuples on join attributes 
2. Local join

Parallel Processing 45

Node 1 Node 2 Node 3

hash R.A hash R.A hash R.A

Node 3Node 2Node 1

Assume:
R and S are block partitioned

hash S.A hash S.A hash S.A

SELECT *
FROM R, S
WHERE R.A = S.A

⋈&."#)." ⋈&."#)." ⋈&."#)."

R S R S R S
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Data: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) ⋈ S(K2,B,C)

46

K1 B
1 20
2 50

K2 B
101 50
102 50

K1 B
3 20
4 20

K2 B
201 20
202 50

R1 S1 R2 S2

K1 B
1 20
3 20
4 20

K2 B
201 20

K1 B
2 50

K2 B
101 50
102 50
202 50

R1’ S1’ R2’ S2’

M1 M2

M1 M2

Shuffle

⋈ ⋈

Partition

Local 
Join

Join on R.B = S.B
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σR.a – T.f >100

scan R

Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

σR.a – T.f >100

scan R scan S scan T

h(R.b) h(S.c) h(T.e)

R ⨝ S

h(S.d)

RS ⨝ T

Shuffling intermediate result from R ⨝ S

Shuffling R, S, and T

47
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Multiple Shuffles



Summary

§With one new operator, we’ve made an 
OLAP-ready parallel DBMS!
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Speedup and Scaleup

§Consider:
• Query: 𝛾A,sum(C)(R)
• Runtime: dominated by reading chunks from disk

§ If we double the number of nodes P, what is the 
new running time?

§ If we double both P and the size of R, what is the 
new running time?
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Speedup and Scaleup

§Consider:
• Query: 𝛾A,sum(C)(R)
• Runtime: dominated by reading chunks from disk

§ If we double the number of nodes P, what is the 
new running time?

• Half (each server holds ½ as many chunks)
§ If we double both P and the size of R, what is the 

new running time?
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Speedup and Scaleup

§Consider:
• Query: 𝛾A,sum(C)(R)
• Runtime: dominated by reading chunks from disk

§ If we double the number of nodes P, what is the 
new running time?

• Half (each server holds ½ as many chunks)
§ If we double both P and the size of R, what is the 

new running time?
• Same (each server holds the same # of chunks)
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Basic Parallel GroupBy

Can we do better?
§Sum?
§Count?
§Avg?
§Max?
§Median?
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Basic Parallel GroupBy

Can we do better?
§Sum?
§Count?
§Avg?
§Max?
§Median?
YES
§Compute partial aggregates before shuffling

53Parallel Processing

Distributive Algebraic Holistic

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))

avg(B) = 
sum(B)/count(B)

median(B)
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Basic Parallel GroupBy

Can we do better?
§Sum?
§Count?
§Avg?
§Max?
§Median?
YES
§Compute partial aggregates before shuffling

54Parallel Processing

Distributive Algebraic Holistic

sum(a1+a2+…+a9)=
sum(sum(a1+a2+a3)+

sum(a4+a5+a6)+
sum(a7+a8+a9))

avg(B) = 
sum(B)/count(B)

median(B)

MapReduce implements this as “Combiners” 
February 18, 2022



Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

SELECT a, max(b) as topb
FROM R WHERE a > 0
GROUP BY a 

Example Query with Group By
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Machine 1

1/3 of R

Machine 2

1/3 of R

Machine 3

1/3 of R

σa>0

scan

g a, max(b)→b

hash on a

g a, max(b)→topb

σa>0

scan

g a, max(b)→b

hash on a

g a, max(b)→topb

σa>0

scan

g a, max(b)→b

hash on a

g a, max(b)→topb
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Optimization Joins for Small Relations

When joining R and S
§ If |R| >> |S|

• Leave R where it is
• Replicate entire S relation across nodes

§Also called a small join or a broadcast join
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Machine 1

1/3 of R, S, T

Machine 2

1/3 of R, S, T

Machine 3

1/3 of R, S, T

Broadcasting S and T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T

σR.a – T.f >100

scan R

scan S scan T

broadcast broadcast

R ⨝ S

RS ⨝ T
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Optimization Joins for Small Relations



Some Skew Handling Techniques

Skew:
§Some partitions get more input tuples than others

Reasons:
• Range-partition instead of hash
• Some values are very popular: 

• Heavy hitters values;  e.g. ‘Justin Bieber’
• Selection before join with different selectivities

§Some partitions generate more output tuples than 
others
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Some Skew Handling Techniques

If using range partition:

§ Ensure each range gets same number of tuples

§ E.g.: {1, 1, 1, 2, 3, 4, 5, 6 } à [1,2] and [3,6]

§ Eq-depth v.s. eq-width histograms
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Some Skew Handling Techniques

Create more partitions than nodes

§And be smart about scheduling the partitions

§Note: MapReduce uses this technique
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Some Skew Handling Techniques

Use subset-replicate (a.k.a. “skewedJoin”)
§Given R ⋈A=B S
§Given a heavy hitter value R.A = ‘v’

(i.e. ‘v’ occurs very many times in R)
§Partition R tuples with value ‘v’ across all nodes

e.g. block-partition, or hash on other attributes
§Replicate S tuples with value ‘v’ to all nodes
§R = the build relation
§S = the probe relation
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Summary of Parallel RDBMS

§Hash shuffle does it all

§ Techniques have been around for decades

§We still get benefits of the relational database!
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