

Introduction to Data Management BCNF Decomposition

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

Recap

Superkey

A Superkey is a set of attributes A_{1}, \ldots, A_{n} s.t. for any single attribute B :

$$
A_{1}, \ldots, A_{n} \rightarrow B
$$

In other words, for the set of all attributes C in the relation R, the set $\left\{A_{1}, \ldots, A_{n}\right\}$ is a superkey iff $\left\{A_{1}, \ldots, A_{n}\right\}^{+}=C$

Recap

Superkey

A Superkey is a set of attributes A_{1}, \ldots, A_{n} s.t. for any single attribute B :

$$
A_{1}, \ldots, A_{n} \rightarrow B
$$

In other words, for the set of all attributes C in the relation R, the set $\left\{A_{1}, \ldots, A_{n}\right\}$ is a superkey iff $\left\{A_{1}, \ldots, A_{n}\right\}^{+}=C$

Key

A Key is a minimal superkey, i.e. no subset of a key is a superkey.

Recap

Superkey

A Superkey is a set of attributes A_{1}, \ldots, A_{n} s.t. for any single attribute B :

$$
A_{1}, \ldots, A_{n} \rightarrow B
$$

In other words, for the set of all attributes C in the relation R, the set $\left\{A_{1}, \ldots, A_{n}\right\}$ is a superkey iff $\left\{A_{1}, \ldots, A_{n}\right\}^{+}=C$

Key

A Key is a minimal superkey, i.e. no subset of a key is a superkey.

Superkeys

Keys

Recap

Restaurants(rid, name, rating, popularity) rid \rightarrow name
rid \rightarrow rating
rating \rightarrow popularity

	Closure	Superkey?	Key?
\{rid, rating\}	\{rid, name, rating, popularity\}		
rid	\{rid, name, rating, popularity\}		
rating	\{rating, popularity		
popularity	\{popularity\}		

Recap

Restaurants(rid, name, rating, popularity) rid \rightarrow name
rid \rightarrow rating
rating \rightarrow popularity

	Closure	Superkey?	Key?
\{rid, rating\}	\{rid, name, rating, popularity\}	Yes	
rid	\{rid, name, rating, popularity\}	Yes	
rating	\{rating, popularity\}		
popularity	\{popularity\}		

Recap

Restaurants(rid, name, rating, popularity) rid \rightarrow name
rid \rightarrow rating
rating \rightarrow popularity

	Closure	Superkey?	Key?
\{rid, rating\}	\{rid, name, rating, popularity\}	Yes	
rid	\{rid, name, rating, popularity\}	Yes	
rating	\{rating, popularity\}	No	
popularity	\{popularity\}	No	

Recap

Restaurants(rid, name, rating, popularity) rid \rightarrow name
rid \rightarrow rating
rating \rightarrow popularity

	Closure	Superkey?	Key?
\{rid, rating\}	\{rid, name, rating, popularity\}	Yes	No
rid	\{rid, name, rating, popularity\}	Yes	
rating	\{rating, popularity\}	No	
popularity	\{popularity\}	No	

Recap

Restaurants(rid, name, rating, popularity) rid \rightarrow name
rid \rightarrow rating
rating \rightarrow popularity

	Closure	Superkey?	Key?
\{rid, rating\}	\{rid, name, rating, popularity\}	Yes	No
rid	\{rid, name, rating, popularity\}	Yes	Yes
rating	\{rating, popularity\}	No	
popularity	\{popularity\}	No	

Recap

Restaurants(rid, name, rating, popularity) rid \rightarrow name
rid \rightarrow rating
rating \rightarrow popularity

	Closure	Superkey?	Key?
\{rid, rating\}	\{rid, name, rating, popularity\}	Yes	No
rid	\{rid, name, rating, popularity\}	Yes	Yes
rating	\{rating, popularity\}	No	No
popularity	\{popularity\}	No	No

Usefulness of Keys in Design

What intuitions do we get from data interrelationships?

- FDs that are not superkeys hint at redundancy
- If a FD antecedent is not a superkey, we can remove redundant information, i.e. the FD consequent
- Rephrased
- $\{A\} \rightarrow\{B\}$ is fine if $\{A\}$ is a superkey
- Otherwise, we can extract $\{B\}$ into a separate table

Name	SSN	Phone	City
Fred	$123-45-6789$	$206-555-9999$	Seattle
Fred	$123-45-6789$	$206-555-8888$	Seattle
Joe	$987-65-4321$	$415-555-7777$	San Francisco

SSN is not a superkey!

Usefulness of Keys in Design

What intuitions do we get from data interrelationships?

- FDs that are not superkeys hint at redundancy
- If a FD antecedent is not a superkey, we can remove redundant information, i.e. the FD conseq
- Rephrased
- $\{A\} \rightarrow\{B\}$ is fine if $\{A\}$ is a superkey
- Otherwise, we can extract $\{B\}$ into a se parate table

Name	SSN	Phone	City
Fred	$123-45-6789$	$206-555-9999$	Seattle
Fred	$123-45-6789$	$206-555-8888$	Seattle
Joe	$987-65-4321$	$415-555-7777$	San Francisco

SSN is not a superkey!

Think About This

$$
\{S S N\}+=?
$$

Previously we converted this

Name	SSN	Phone	City
Fred	$123-45-6789$	$206-555-9999$	Seattle
Fred	$123-45-6789$	$206-555-8888$	Seattle
Joe	$987-65-4321$	$415-555-7777$	San Francisco

into this

Name	SSN	City		SSN	Phone
Fred	$123-45-6789$	Seattle		$123-45-6789$	$206-555-9999$
Joe	$987-65-4321$	San Francisco		$123-45-6789$	$206-555-8888$
			$987-65-4321$	$415-555-7777$	

Think About This

\{SSN\}+ = \{SSN, Name, City\}

Previously we converted this

Name	SSN	Phone	City
Fred	$123-45-6789$	$206-555-9999$	Seattle
Fred	$123-45-6789$	$206-555-8888$	Seattle
Joe	$987-65-4321$	$415-555-7777$	San Francisco

into this

Name	SSN	City	SSN	Phone
Fred	123-45-6789	Seattle	123-45-6789	206-555-9999
Joe	987-65-4321	San Francisco	123-45-6789	206-555-8888
			987-65-4321	415-555-7777

Database Design

Database Design is about

(1) characterizing data and (2) organizing data

How to talk about properties
we know or see in the data

Database Design

Database Design is about

(1) characterizing data and (2) organizing data

How to organize data to promote ease of use and efficiency

Normal Forms

Normal Forms

- 1NF \rightarrow Flat
- 2NF \rightarrow No partial FDs (obsolete)
- 3NF \rightarrow Preserve all FDs, but allow anomalies
- BCNF \rightarrow No transitive FDs, but can lose FDs
-4NF Considers multi-valued dependencies
- 5NF \rightarrow nsiders join dependencies (hard to do)

In 414, we only discuss this

Normal Forms

1NF

A relation R is in First Normal Form if all attribute values are atomic. Attribute values cannot be multivalued. Nested relations are not allowed.

We call data in 1NF "flat."

BCNF

BCNF

A relation R is in Boyce-Codd Normal Form (BCNF) if for every non-trivial dependency, $X \rightarrow A, X$ is a superkey.

Equivalently, a relation R is in BCNF if $\forall X$ either $X^{+}=X$ or $X^{+}=C$ where C is the set of all attributes in R

BCNF

BCNF

A relation R is in Boyce-Codd Normal Form (BCNF) if for every non-trivial dependency, $X \rightarrow A, X$ is a superkey.

Equivalently, a relation R is in BCNF if $\forall X$ either $X^{+}=X$ or $X^{+}=C$ where C is the set of all attributes in R

Trvial FD

BCNF

BCNF

A relation R is in Boyce-Codd Normal Form (BCNF) if for every non-trivial dependency, $X \rightarrow A, X$ is a superkey.

Equivalently, a relation R is in BCNF if $\forall X$ either $X^{+}=X$ or $X^{+}=C$ where C is the set of all attributes in R

Name	SSN	Phone	City
Fred	$123-45-6789$	$206-555-9999$	Seattle
Fred	$123-45-6789$	$206-555-8888$	Seattle
Joe	$987-65-4321$	$415-555-7777$	San Francisco

SSN \rightarrow SSN, Name, City
We often call these "bad FDs" because they prevent the relation from being in BCNF

BCNF

BCNF

A relation R is in Boyce-Codd Normal Form (BCNF) if for derybun-trivia dependency, $X \rightarrow A, X$ is a superkey.

Equivalently, a relation R is in BCNF if $\forall X$ either $X^{+}=X$ or $X^{+}=C$ where C is the set of all attributes in R

Name	SSN	Phone	City
Fred	$123-45-6789$	$206-555-9999$	Seattle
Fred	$123-45-6789$	$206-555-8888$	Seattle
Joe	$987-65-4321$	$415-555-7777$	San Francisco

SSN \rightarrow SSN, Name, City
We often call these "bad FDs" because they prevent the relation from being in BCNF

If we remove all the bad FDs, then the relation is in BCNF

Decomposition

- "Extracting" attributes can be done with decomposition (split the schema into smaller parts)
- For this class, decomposition means the following:

$$
R\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}, C_{1}, \ldots, C_{k}\right)<\begin{aligned}
& R_{1}\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right) \\
& R_{2}\left(A_{1}, \ldots, A_{n}, C_{1}, \ldots, C_{k}\right)
\end{aligned}
$$

Decomposition

- "Extracting" attributes can be done with decomposition (split the schema into smaller parts)
- For this class, decomposition means the following:

$$
\begin{array}{r}
R\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}, C_{1}, \ldots, C_{k}\right)<\begin{array}{l}
R_{1}\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right) \\
R_{2}\left(A_{1}, \ldots, A_{n}, C_{1}, \ldots, C_{k}\right)
\end{array} \\
\\
\begin{array}{c}
\text { Some common } \\
\text { attributes are present } \\
\text { so we can rejoin data }
\end{array} \\
\hline
\end{array}
$$

BCNF

BCNF Decomposition Algorithm

	Normalize (R)	
$C \leftarrow$ the set of all attributes in R		
	find X s.t. $X^{+} \neq X$ and $X^{+} \neq C$	
if X is not found		
	then "R is in BCNF"	
	else	
	decompose R into $R_{1}\left(X^{+}\right)$and $R_{2}\left(\left(C-X^{+}\right) \cup X\right)$	
	$\operatorname{Normalize}\left(R_{1}\right)$	
	$\operatorname{Normalize}\left(R_{2}\right)$	

BCNF

BCNF Decomposition Algorithm

BCNF

BCNF Decomposition Algorithm

BCNF

BCNF Decomposition Algorithm

BCNF Decomposition Example

Restaurants(rid, name, rating, popularity, recommended) rid \rightarrow name, rating rating \rightarrow popularity popularity \rightarrow recommended

Restaurants(rid, name, rating, popularity, recommended)

BCNF Decomposition Example

	Normalize (R)
$C \leftarrow$ the set of all attributes in R	
	find X s.t. $X^{+} \neq X$ and $X^{+} \neq C$
if X is not found	
then "R is in BCNF"	
else	
decompose R into $R_{1}\left(X^{+}\right)$and $R_{2}\left(\left(C-X^{+}\right) \cup X\right)$	
	$\operatorname{Normalize}\left(R_{1}\right)$

Restaurants(rid, name, rating, popularity, recommended) rid \rightarrow name, rating rating \rightarrow popularity popularity \rightarrow recommended

Restaurants(rid, name, rating, popularity, recommended)
(1) rating \rightarrow rating, popularity, recommended ("bad" FD)

BCNF Decomposition Example

	```Normalize(R) C}\leftarrow\mathrm{ the set of all attributes in R find }X\mathrm{ s.t. }\mp@subsup{X}{}{+}\not=X\mathrm{ and }\mp@subsup{X}{}{+}\not= if }X\mathrm{ is not found then "R is in BCNF" else decompose R into R}\mp@subsup{R}{1}{}(\mp@subsup{X}{}{+})\mathrm{ and }\mp@subsup{R}{2}{}((C-\mp@subsup{X}{}{+})\cupX Normalize( }\mp@subsup{R}{1}{}\mathrm{ ) Normalize( }\mp@subsup{R}{2}{}\mathrm{ )```	

Restaurants(rid, name, rating, popularity, recommended) rid $\rightarrow$ name, rating rating $\rightarrow$ popularity popularity $\rightarrow$ recommended

Restaurants(rid, name, rating, popularity, recommended)
(1) rating $\rightarrow$ rating, popularity, recommended ("bad" FD)
(2) R1 = rating, popularity, recommended

## BCNF Decomposition Example

	```Normalize(R) C}\leftarrow\mathrm{ the set of all attributes in R find }X\mathrm{ s.t. }\mp@subsup{X}{}{+}\not=X\mathrm{ and }\mp@subsup{X}{}{+}\not= if }X\mathrm{ is not found then "R is in BCNF" else decompose R into R}\mp@subsup{R}{1}{}(\mp@subsup{X}{}{+})\mathrm{ and }\mp@subsup{R}{2}{}((C-\mp@subsup{X}{}{+})\cupX Normalize( }\mp@subsup{R}{1}{}\mathrm{ ) Normalize( }\mp@subsup{R}{2}{}\mathrm{ )```	

Restaurants(rid, name, rating, popularity, recommended) rid \rightarrow name, rating rating \rightarrow popularity popularity \rightarrow recommended

Restaurants(rid, name, rating, popularity, recommended)
(1) rating \rightarrow rating, popularity, recommended ("bad" FD)
(2) R1 = rating, popularity, recommended
(3) R2 = rid, name, rating

BCNF Decomposition Example

	```Normalize(R) C}\leftarrow\mathrm{ the set of all attributes in R find }X\mathrm{ s.t. }\mp@subsup{X}{}{+}\not=X\mathrm{ and }\mp@subsup{X}{}{+}\not= if }X\mathrm{ is not found then "R is in BCNF" else decompose R into R}\mp@subsup{R}{1}{}(\mp@subsup{X}{}{+})\mathrm{ and }\mp@subsup{R}{2}{}((C-\mp@subsup{X}{}{+})\cupX Normalize( }\mp@subsup{R}{1}{}\mathrm{ ) Normalize( }\mp@subsup{R}{2}{}\mathrm{ )```	

Restaurants(rid, name, rating, popularity, recommended) rid $\rightarrow$ name, rating rating $\rightarrow$ popularity popularity $\rightarrow$ recommended

Restaurants(rid, name, rating, popularity, recommended)
(1) rating $\rightarrow$ rating, popularity, recommended ("bad" FD)
(2) R1 = rating, popularity, recommended
(3) R2 = rid, name, rating

Finished?

## BCNF Decomposition Example

	Normalize $(R)$	
$C \leftarrow \leftarrow$ the set of all attributes in $R$		
	find $X$ s.t. $X^{+} \neq X$ and $X^{+} \neq C$	
	if $X$ is not found	
then "R is in BCNF"		
	else	
	decompose $R$ into $R_{1}\left(X^{+}\right)$and $R_{2}\left(\left(C-X^{+}\right) \cup X\right)$	
	$\operatorname{Normalize}\left(R_{1}\right)$	
	$\operatorname{Normalize}\left(R_{2}\right)$	

Restaurants(rid, name, rating, popularity, recommended) rid $\rightarrow$ name, rating rating $\rightarrow$ popularity popularity $\rightarrow$ recommended

Restaurants(rid, name, rating, popularity, recommended)
(1) rating $\rightarrow$ rating, popularity, recommended ("bad" FD)
(2) R1 = rating, popularity, recommended
(3) R2 = rid, name, rating

Finished? NO! (popularity $\rightarrow$ recommended) is still "bad" We decompose R1 into R3, R4

## BCNF Decomposition Example

	Normalize $(R)$	
$C \leftarrow \leftarrow$ the set of all attributes in $R$		
	find $X$ s.t. $X^{+} \neq X$ and $X^{+} \neq C$	
	if $X$ is not found	
then "R is in BCNF"		
	else	
	decompose $R$ into $R_{1}\left(X^{+}\right)$and $R_{2}\left(\left(C-X^{+}\right) \cup X\right)$	
	$\operatorname{Normalize}\left(R_{1}\right)$	
	$\operatorname{Normalize}\left(R_{2}\right)$	

Restaurants(rid, name, rating, popularity, recommended) rid $\rightarrow$ name, rating rating $\rightarrow$ popularity popularity $\rightarrow$ recommended

Restaurants(rid, name, rating, popularity, recommended)
(1) rating $\rightarrow$ rating, popularity, recommended ("bad" FD)
(2) R1 = rating, popularity, recommended
(3) R2 = rid, name, rating

Finished? NO! (popularity $\rightarrow$ recommended) is still "bad"
We decompose R1 into R3, R4
$\mathrm{R} 2=$ ride, name, rating $\quad \mathrm{R} 3=$ rating, popularity $\quad \mathrm{R} 4=$ popularity, recommended

## BCNF Decomposition Example

	Normalize $(R)$	
$C \leftarrow$ the set of all attributes in $R$		
	find $X$ s.t. $X^{+} \neq X$ and $X^{+} \neq C$	
if $X$ is not found		
	then "R is in BCNF"	
else		
	decompose $R$ into $R_{1}\left(X^{+}\right)$and $R_{2}\left(\left(C-X^{+}\right) \cup X\right)$	
	$N \operatorname{Normalize}\left(R_{1}\right)$	
	$\operatorname{Normalize}\left(R_{2}\right)$	

Restaurants(rid, name, rating, popularity, recommended) rid $\rightarrow$ name, rating rating $\rightarrow$ popularity popularity $\rightarrow$ recommended

Restaurants(rid, name, rating, popularity, recommended)
(1) rating $\rightarrow$ rating, popularity, recommended ("bad" FD)
(2) R1 = rating, popularity, recommended
(3) R2 = rid, name, rating

Finished? NO! (popularity $\rightarrow$ recommended) is still "bad"

These three tables are the final decomp.

We decompose R1 into R3, R4

$$
\mathrm{R} 2=\text { ride, name, rating } \quad \mathrm{R} 3=\text { rating, popularity } \quad \mathrm{R} 4=\text { popularity, recommended }
$$

## BCNF Decomposition Order

```
Restaurants(rid, name, rating, popularity, recommended)
rid }->\mathrm{ name, rating
rating }->\mathrm{ popularity
popularity }->\mathrm{ recommended
```

Note that we chose to split the tables on (rating $\rightarrow$ rating, popularity, recommended) first. We could have instead chosen (popularity $\rightarrow$ recommended) first.

In this case the final tables in BCNF will have the same attributes, but not always.

As long as the end result is in BCNF, the particular distribution of attributes doesn't matter for correctness.

## Losslessness

## Definition

Lossless Decomposition is a reversible decomposition, i.e. rejoining all decomposed relations will always result exactly with the original data.

This is the opposite of a Lossy Decomposition, an irreversible decomposition, where rejoining all decomposed relations may result something other than the original data, specifically with extra tuples.

This concept might be familiar if you have ever encountered lossless data compression (e.g. Huffman encoding or PNG) or lossy data compression (e.g. JPEG).

## Losslessness

## Definition

Lossless Decomposition is a reversible decomposition, i.e. rejoining all decomposed relations will always result exactly with the original data.

This is the opposite of a Lossy Decomposition, an irreversible decomposition, where rejoining all decomposed relations may result something other than the original data, specifically with extra tuples.

This concept might be familiar if you have ever encountered lossless data compression (e.g. Huffman encoding or PNG) or lossy data compression (e.g. JPEG).


Neural nets trying to solve the "Zoom... enhance!" problem
(link from Google Research)

## Losslessness

## Definition

Lossless Decomposition is a reversible decomposition, i.e. rejoining all decomposed relations will always result exactly with the original data.

This is the opposite of a Lossy Decomposition, an irreversible decomposition, where rejoining all decomposed relations may result something other than the original data, specifically with extra tuples.

This concept might be familiar if you have ever encountered lossless data compression (e.g. Huffman encoding or PNG) or lossy data compression (e.g. JPEG).


Neural nets trying to solve the "Zoom... enhance!" problem
(link from Google Research)

## Losslessness

## Is BCNF decomposition lossless?

## Losslessness

Is BCNF decomposition lossless?

Yes!

In our example:

R2 = ride, name, rating
R3 = rating, popularity
R4 = popularity, recommended

## Losslessness

Is BCNF decomposition lossless?

Yes!

In our example:

R2 = rid, name, rating
R3 = rating, popularity
R4 = popularity, recommended
...gives us original R

## More examples

Consider this example:
$R(A, B, C, D, E, F)$
$A->C D$
$F->A E$
$D \rightarrow B$

## More examples

Consider this example:

$$
\begin{aligned}
& R(A, B, C, D, E, F) \\
& A->C D \\
& F->A E \\
& D \rightarrow B
\end{aligned}
$$

Good idea to start with closures first:
A $+=\{A B C D\}$
So what's our first decomp?

## More examples

Consider this example:

$$
\begin{aligned}
& R(A, B, C, D, E, F) \\
& A->C D \\
& F->A E \\
& D \rightarrow B
\end{aligned}
$$

Good idea to start with closures first:
A $+=\{A B C D\}$
So what's our first decomp?

## More examples

## $R(A B C D E F)$

$$
\begin{aligned}
& A->C D \\
& F->A E \\
& D->B
\end{aligned}
$$

## More examples

$R(A B C D E F)$


R1 (?)

$$
\begin{aligned}
& \text { A -> CD } \\
& F->A E \\
& D->B
\end{aligned}
$$

## More examples

$R(A B C D(E F)$
$R 1$ ( $A B C D$ ) 2 (?) $\quad \widehat{A}=\{A B C D\}$

## More examples

## $R$ (ABCDEF)

$$
\begin{aligned}
& \text { A -> CD } \\
& \text { F -> AE } \\
& \text { D -> B }
\end{aligned}
$$

$R 1(A B C D) \quad R 2(A E F) \quad A+=\{A B C D\}$

## More examples

## $R(A B C D E F)$

$$
\begin{aligned}
& \text { A -> CD } \\
& \text { F -> AE } \\
& D->B
\end{aligned}
$$

Done?

## More examples

## $R(A B C D E F)$

$$
\begin{aligned}
& \text { A -> CD } \\
& \text { F -> AE } \\
& D->B
\end{aligned}
$$

Done? No!

## More examples

## $R(A B C D E F)$

R1 (ABCD) R2 (AEF)

$A C D$

$$
\begin{aligned}
& \text { A -> CD } \\
& \text { F -> AE } \\
& \text { D -> B }
\end{aligned}
$$

Next attribute(s)?

