

Introduction to Data Management BCNF Decomposition

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

BCNF Decomposition

Superkey

A **Superkey** is a set of attributes $A_1, ..., A_n$ s.t. for any single attribute *B*:

$$A_1, \ldots, A_n \to B$$

In other words, for the set of all attributes *C* in the relation *R*, the set $\{A_1, ..., A_n\}$ is a superkey iff $\{A_1, ..., A_n\}^+ = C$

Superkey

A **Superkey** is a set of attributes $A_1, ..., A_n$ s.t. for any single attribute *B*:

$$A_1, \dots, A_n \to B$$

In other words, for the set of all attributes *C* in the relation *R*, the set $\{A_1, ..., A_n\}$ is a superkey iff $\{A_1, ..., A_n\}^+ = C$

Key

A Key is a minimal superkey, i.e. no subset of a key is a superkey.

Superkey

A **Superkey** is a set of attributes $A_1, ..., A_n$ s.t. for any single attribute *B*:

$$A_1, \dots, A_n \to B$$

In other words, for the set of all attributes *C* in the relation *R*, the set $\{A_1, ..., A_n\}$ is a superkey iff $\{A_1, ..., A_n\}^+ = C$

Key

A Key is a minimal superkey, i.e. no subset of a key is a superkey.

	Closure	Superkey?	Key?
{rid, rating}	{rid, name, rating, popularity}		
rid	{rid, name, rating, popularity}		
rating	{rating, popularity}		
popularity	{popularity}		

	Closure	Superkey?	Key?
{rid, rating}	{rid, name, rating, popularity}	Yes	
rid	{rid, name, rating, popularity}	Yes	
rating	{rating, popularity}		
popularity	{popularity}		

	Closure	Superkey?	Key?
{rid, rating}	{rid, name, rating, popularity}	Yes	
rid	{rid, name, rating, popularity}	Yes	
rating	{rating, popularity}	No	
popularity	{popularity}	No	

	Closure	Superkey?	Key?
{rid, rating}	{rid, name, rating, popularity}	Yes	No
rid	{rid, name, rating, popularity}	Yes	
rating	{rating, popularity}	No	
popularity	{popularity}	No	

	Closure	Superkey?	Key?
{rid, rating}	{rid, name, rating, popularity}	Yes	No
rid	{rid, name, rating, popularity}	Yes	Yes
rating	{rating, popularity}	No	
popularity	{popularity}	No	

	Closure	Superkey?	Key?
{rid, rating}	{rid, name, rating, popularity}	Yes	No
rid	{rid, name, rating, popularity}	Yes	Yes
rating	{rating, popularity}	No	No
popularity	{popularity}	No	No

Usefulness of Keys in Design

What intuitions do we get from data interrelationships?

- FDs that are not superkeys hint at redundancy
 - If a FD antecedent is **not** a superkey, we can remove redundant information, i.e. the FD consequent
- Rephrased
 - $\{A\} \rightarrow \{B\}$ is fine if $\{A\}$ is a superkey
 - Otherwise, we can extract $\{B\}$ into a separate table

Name	SSN	Phone	City
Fred	123-45-6789	206-555-9999	Seattle
Fred	123-45-6789	206-555-8888	Seattle
Joe	987-65-4321	415-555-7777	San Francisco

SSN is not a superkey!

Usefulness of Keys in Design

What intuitions do we get from data interrelationships?

- FDs that are not superkeys hint at redundancy
 - If a FD antecedent is **not** a superkey, we can remove redundant information, i.e. the FD consequent Redundancy!
- Rephrased
 - $\{A\} \rightarrow \{B\}$ is fine if $\{A\}$ is a superkey
 - Otherwise, we can extract $\{B\}$ into a sparate table

Name	SSN	Phone	City
Fred	123-45-6789	206-555-9999	Seattle
Fred	123-45-6789	206-555-8888	Seattle
Joe	987-65-4321	415-555-7777	San Francisco

SSN is not a superkey!

$$\{SSN\}$$
+ = ?

Previously we converted this

Name	SSN	Phone	City
Fred	123-45-6789	206-555-9999	Seattle
Fred	123-45-6789	206-555-8888	Seattle
Joe	987-65-4321	415-555-7777	San Francisco

into this

Name	SSN	City	SSN	Phone
Fred	123-45-6789	Seattle	123-45-6789	206-555-9999
Joe	987-65-4321	San Francisco	123-45-6789	206-555-8888
			987-65-4321	415-555-7777

{SSN}+ = {SSN, Name, City}

Previously we converted this

Name	SSN	Phone	City
Fred	123-45-6789	206-555-9999	Seattle
Fred	123-45-6789	206-555-8888	Seattle
Joe	987-65-4321	415-555-7777	San Francisco

into this

Name	SSN	City	SSN	Phone
Fred	123-45-6789	Seattle	123-45-6789	206-555-9999
Joe	987-65-4321	San Francisco	123-45-6789	206-555-8888
			987-65-4321	415-555-7777

Database Design is about (1) characterizing data and (2) organizing data

How to talk about properties we know or see in the data

Database Design is about (1) characterizing data and (2) organizing data

How to organize data to promote ease of use and efficiency

Normal Forms

Normal Forms

- 1NF \rightarrow Flat
- 2NF \rightarrow No partial FDs (obsolete)
- 3NF → Preserve all FDs, but allow anomalies
- BCNF \rightarrow No transitive FDs, but can lose FDs
- 4NF Considers multi-valued dependencies
- 5NF \rightarrow onsiders join dependencies (hard to do)

In 414, we only discuss this

Normal Forms

1NF

A relation *R* is in **First Normal Form** if all attribute values are atomic. Attribute values cannot be multivalued. Nested relations are not allowed.

We call data in 1NF "flat."

A relation *R* is in **Boyce-Codd Normal Form (BCNF)** if for every non-trivial dependency, $X \rightarrow A$, X is a superkey.

Equivalently, a relation *R* is in BCNF if $\forall X$ either $X^+ = X$ or $X^+ = C$ where *C* is the set of all attributes in *R*

A relation *R* is in **Boyce-Codd Normal Form (BCNF)** if for every non-trivial dependency, $X \rightarrow A$, X is a superkey.

Equivalently, a relation R is in BCNF if $\forall X$ either $X^+ = X$ or $X^+ = C$ where C is the set of all attributes in R

BCNF

A relation *R* is in **Boyce-Codd Normal Form (BCNF)** if for every non-trivial dependency, $X \rightarrow A$, X is a superkey.

Equivalently, a relation *R* is in BCNF if $\forall X$ either $X^+ = X$ or $X^+ = C$ where *C* is the set of all attributes in *R*

Name	SSN	Phone	City
Fred	123-45-6789	206-555-9999	Seattle
Fred	123-45-6789	206-555-8888	Seattle
Joe	987-65-4321	415-555-7777	San Francisco

SSN \rightarrow SSN, Name, City

We often call these "bad FDs" because they prevent the relation from being in BCNF

BCNF

A relation *R* is in **Boyce-Codd Normal Form (BCNF)** if for every ton-trivial dependency, $X \rightarrow A$, X is a superkey.

Equivalently, a relation *R* is in BCNF if $\forall X$ either $X^+ = X$ or $X^+ = C$ where *C* is the set of all attributes in *R*

Name	SSN	Phone	City
Fred	123-45-6789	206-555-9999	Seattle
Fred	123-45-6789	206-555-8888	Seattle
Joe	987-65-4321	415-555-7777	San Francisco

 $\text{SSN} \rightarrow \text{SSN}, \text{Name, City}$

We often call these "bad FDs" because they prevent the relation from being in BCNF

If we remove all the bad FDs, then the relation is in BCNF

Decomposition

- "Extracting" attributes can be done with decomposition (split the schema into smaller parts)
- For this class, decomposition means the following:

$$R(A_1, \dots, A_n, B_1, \dots, B_m, C_1, \dots, C_k) \leq \frac{R_1(A_1, \dots, A_n, B_1, \dots, B_m)}{R_2(A_1, \dots, A_n, C_1, \dots, C_k)}$$

Decomposition

- "Extracting" attributes can be done with decomposition (split the schema into smaller parts)
- For this class, decomposition means the following:

$$R(A_1, \dots, A_n, B_1, \dots, B_m, C_1, \dots, C_k) \leq R_1 \underbrace{(A_1, \dots, A_n, B_1, \dots, B_m)}_{(A_1, \dots, A_n, C_1, \dots, C_k)}$$

Some common attributes are present so we can rejoin data

Normalize(R) $C \leftarrow$ the set of all attributes in R find X s.t. $X^+ \neq X$ and $X^+ \neq C$ if X is not found then "R is in BCNF" else decompose R into $R_1(X^+)$ and $R_2((C - X^+) \cup X)$ Normalize(R_1) Normalize(R_2)

Normalize(R) $C \leftarrow \text{the set of all attributes in } R$ find X s.t. $X^+ \neq X$ and $X^+ \neq C$ if X is not found then "R is in BCNF" else decompose R into $R_1(X^+)$ and $R_2((C - X^+) \cup X)$ Normalize(R_1) Normalize(R_2) Restaurants(rid, name, rating, popularity, recommended)

rid \rightarrow name, rating

rating \rightarrow popularity

popularity \rightarrow recommended

Restaurants(rid, name, rating, popularity, recommended)

Normalize(R) $C \leftarrow$ the set of all attributes in R find X s.t. $X^+ \neq X$ and $X^+ \neq C$ if X is not found then "R is in BCNF" else decompose R into $R_1(X^+)$ and $R_2((C - X^+) \cup X)$ Normalize(R_1) Normalize(R_2) Restaurants(rid, name, rating, popularity, recommended) rid \rightarrow name, rating

rating \rightarrow popularity

popularity \rightarrow recommended

Restaurants(rid, name, rating, popularity, recommended)

(1) rating \rightarrow rating, popularity, recommended ("bad" FD)

Normalize(R) $C \leftarrow$ the set of all attributes in R find X s.t. $X^+ \neq X$ and $X^+ \neq C$ if X is not found then "R is in BCNF" else decompose R into $R_1(X^+)$ and $R_2((C - X^+) \cup X)$ Normalize(R_1) Normalize(R_2) Restaurants(rid, name, rating, popularity, recommended) rid \rightarrow name, rating

rating \rightarrow popularity

popularity \rightarrow recommended

Restaurants(rid, name, rating, popularity, recommended)

- (1) rating \rightarrow rating, popularity, recommended ("bad" FD)
- (2) R1 = rating, popularity, recommended

Normalize(R) $C \leftarrow$ the set of all attributes in R find X s.t. $X^+ \neq X$ and $X^+ \neq C$ if X is not found then "R is in BCNF" else decompose R into $R_1(X^+)$ and $R_2((C - X^+) \cup X)$ Normalize(R_1) Normalize(R_2) Restaurants(rid, name, rating, popularity, recommended)

rid \rightarrow name, rating

rating \rightarrow popularity

popularity \rightarrow recommended

Restaurants(rid, name, rating, popularity, recommended)

- (1) rating \rightarrow rating, popularity, recommended ("bad" FD)
- (2) R1 = rating, popularity, recommended
- (3) R2 = rid, name, rating

Normalize(R) $C \leftarrow$ the set of all attributes in R find X s.t. $X^+ \neq X$ and $X^+ \neq C$ if X is not found then "R is in BCNF" else decompose R into $R_1(X^+)$ and $R_2((C - X^+) \cup X)$ Normalize(R_1) Normalize(R_2) Restaurants(rid, name, rating, popularity, recommended)

rid \rightarrow name, rating

rating \rightarrow popularity

popularity \rightarrow recommended

Restaurants(rid, name, rating, popularity, recommended)

- (1) rating \rightarrow rating, popularity, recommended ("bad" FD)
- (2) R1 = rating, popularity, recommended
- (3) R2 = rid, name, rating

Finished?

Normalize(R) $C \leftarrow$ the set of all attributes in R find X s.t. $X^+ \neq X$ and $X^+ \neq C$ if X is not found then "R is in BCNF" else decompose R into $R_1(X^+)$ and $R_2((C - X^+) \cup X)$ Normalize(R_1) Normalize(R_2) Restaurants(rid, name, rating, popularity, recommended) rid \rightarrow name, rating rating \rightarrow popularity

popularity \rightarrow recommended

Restaurants(rid, name, rating, popularity, recommended)

- (1) rating \rightarrow rating, popularity, recommended ("bad" FD)
- (2) R1 = rating, popularity, recommended
- (3) R2 = rid, name, rating

Finished? NO! (popularity \rightarrow recommended) is still "bad" We decompose R1 into R3, R4

Normalize(R) $C \leftarrow$ the set of all attributes in R find X s.t. $X^+ \neq X$ and $X^+ \neq C$ if X is not found then "R is in BCNF" else decompose R into $R_1(X^+)$ and $R_2((C - X^+) \cup X)$ Normalize(R_1) Normalize(R_2) Restaurants(rid, name, rating, popularity, recommended) rid \rightarrow name, rating rating \rightarrow popularity

popularity \rightarrow recommended

Restaurants(rid, name, rating, popularity, recommended)

- (1) rating \rightarrow rating, popularity, recommended ("bad" FD)
- (2) R1 = rating, popularity, recommended
- (3) R2 = rid, name, rating

Finished? NO! (popularity \rightarrow recommended) is still "bad"

We decompose R1 into R3, R4

R2 = ride, name, rating R3 = rating, popularity R4 = popularity, recommended

Normalize(R) $C \leftarrow$ the set of all attributes in R find X s.t. $X^+ \neq X$ and $X^+ \neq C$ if X is not found then "R is in BCNF" else decompose R into $R_1(X^+)$ and $R_2((C - X^+) \cup X)$ Normalize(R_1) Normalize(R_2) Restaurants(rid, name, rating, popularity, recommended) rid \rightarrow name, rating

rating \rightarrow popularity

popularity \rightarrow recommended

Restaurants(rid, name, rating, popularity, recommended)

- (1) rating \rightarrow rating, popularity, recommended ("bad" FD)
- (2) R1 = rating, popularity, recommended
- (3) R2 = rid, name, rating

Finished? NO! (popularity \rightarrow recommended) is still "bad"These three tables
are the final decomp.We decompose R1 into R3, R4R2 = ride, name, ratingR3 = rating, popularityR4 = popularity, recommended

BCNF Decomposition Order

Restaurants(rid, name, rating, popularity, recommended)

rid \rightarrow name, rating rating \rightarrow popularity

popularity \rightarrow recommended

Note that we chose to split the tables on (rating \rightarrow rating, popularity, recommended) first. We could have instead chosen (popularity \rightarrow recommended) first.

In this case the final tables in BCNF will have the same attributes, but not always.

As long as the end result is in BCNF, the particular distribution of attributes doesn't matter for correctness.

Losslessness

Definition

Lossless Decomposition is a reversible decomposition, i.e. rejoining all decomposed relations will always result exactly with the original data.

This is the opposite of a **Lossy Decomposition**, an irreversible decomposition, where rejoining all decomposed relations may result something other than the original data, specifically with extra tuples.

This concept might be familiar if you have ever encountered lossless data compression (e.g. Huffman encoding or PNG) or lossy data compression (e.g. JPEG).

Losslessness

Definition

Lossless Decomposition is a reversible decomposition, i.e. rejoining all decomposed relations will always result exactly with the original data.

This is the opposite of a **Lossy Decomposition**, an irreversible decomposition, where rejoining all decomposed relations may result something other than the original data, specifically with extra tuples.

This concept might be familiar if you have ever encountered lossless data compression (e.g. Huffman encoding or PNG) or lossy data compression (e.g. JPEG).

Neural nets trying to solve the "Zoom... enhance!" problem

(<u>link</u> from Google Research)

Losslessness

Definition

Lossless Decomposition is a reversible decomposition, i.e. rejoining all decomposed relations will always result exactly with the original data.

This is the opposite of a **Lossy Decomposition**, an irreversible decomposition, where rejoining all decomposed relations may result something other than the original data, specifically with extra tuples.

This concept might be familiar if you have ever encountered lossless data compression (e.g. Huffman encoding or PNG) or lossy data compression (e.g. JPEG).

Neural nets trying to solve the "Zoom... enhance!" problem

(<u>link</u> from Google Research)

BCNF Decomposition

Is BCNF decomposition lossless?

Is BCNF decomposition lossless?

Yes!

In our example:

- R2 = ride, name, rating
- R3 = rating, popularity
- R4 = popularity, recommended

Is BCNF decomposition lossless?

Yes!

In our example:

- R2 = rid, name, rating
- R3 = rating, popularity
- R4 = popularity, recommended

... gives us original R

Consider this example:

R (A, B, C, D, E, F) A -> CD F -> AE D -> B

Consider this example:

```
R(A, B, C, D, E, F)
A-> CD
F-> AE
D-> B
```

Good idea to start with closures first: A+ = {ABCD} So what's our first decomp?

Consider this example:

```
R ( A, B, C, D, E, F )
A -> CD
F -> AE
D -> B
```

Good idea to start with closures first: A+ = {ABCD} So what's our first decomp?

R (ABCDEF)

A -> CD F -> AE D -> B

A -> CD F -> AE D -> B

A -> CD F -> AE D -> B

Done? No!

