

Introduction to Data Management Aggregates and Grouping

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

Announcements

- HW 2 is out now!
 - (Specification, Gradescope link)
 - Still using SQLite, but more complex queries on a larger database
 - Big database of airline flights between cities
 - Self joins, aggregates, GROUP BYs and more
- Try the setup and go to section tomorrow with questions!
 - Note for Cygwin users, you need to place the downloaded files into your Cygwin home directory to see them

> This PC > Local Disk (C:) > cygwin64 > home > Ryan

Recap – Joins

June 28, 2021

- Join to combine data from different tables
 - Nested-loop semantics
 - Filtered cross product semantics
 - Inner join (the most common)
 - Outer joins can preserve information

Recap – Inner Joins

UserID	Name	Job	Salary	UserID	Car
123	Jack	TA	50000	123	Charger
345	Allison	TA	60000	567	Civic
567	Magda	Prof	90000	567	Pinto
789	Dan	Prof	100000		

	SELECT	P.Name,	R.C	Car			
Implicit	FROM	Payroll	AS	P,	Regist	AS	R
-	WHERE	P.UserII) =	R.Ū	JserID;		

SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

What if we have no join predicate?

SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R

for each row1 in Payroll:
 for each row2 in Regist:
 output (row1.Name, row2.Car)

Output every possible pair: "Cross product"

Outer Joins

UserID	Name	Job	Salary	UserID	Car
123	Jack	TA	50000	123	Charger
345	Allison	TA	60000	567	Civic
567	Magda	Prof	90000	567	Pinto
789	Dan	Prof	100000		

Name	Car	NULL is a value
Jack	Charger	context, it may mean
Allison	NULL	unknown, not applicable,
Magda	Civic	etc.
Magda	Pinto	
Dan	NULL	

Outer Joins

- LEFT OUTER JOIN
 - All rows in left table are preserved
- RIGHT OUTER JOIN
 - All rows in right table are preserved
- FULL OUTER JOIN
 - All rows are preserved

UserID	Name	Job	Salary	UserID	Car
123	Jack	TA	50000	123	Charger
345	Allison	TA	60000	567	Civic
567	Magda	Prof	90000	567	Pinto
789	Dan	Prof	100000		

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
R.Car = 'Civic';
```


UserID	Name	Job	Salary	UserID	Car
123	Jack	TA	50000	123	Charger
345	Allison	TA	60000	567	Civic
567	Magda	Prof	90000	567	Pinto
789	Dan	Prof	100000		

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
R.Car = 'Civic' AND
R.Car = 'Pinto';
```


UserID	Name	Job	Salary	UserID	Car
123	Jack	ТА	50000	123	Charger
345	Allison	TA	60000	567	Civic
567	Magda	Prof	90000	567	Pinto
789	Dan	Prof	100000		

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
R.Car = 'Civic' AND
R.Car = 'Pinto';
```

Will this work? Nope, empty set is returned

UserID	Name	Job	Salary	UserID	Car
123	Jack	ТА	50000	123	Charger
345	Allison	TA	60000	567	Civic
567	Magda	Prof	90000	567	Pinto
789	Dan	Prof	100000	789	Pinto

```
SELECT P.Name, R.Car
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID AND
R.Car = 'Civic' AND
R.Car = 'Pinto';
Discuss with the people
around you how you
would solve this.
```


UserID	Name	Job	Salary	UserID	Car
123	Jack	ТА	50000	123	Charger
345	Allison	TA	60000	567	Civic
567	Magda	Prof	90000	567	Pinto
789	Dan	Prof	100000		

```
SELECT P.Name, R1.Car
FROM Payroll AS P, Regist AS R1, Regist AS R2
WHERE P.UserID = R1.UserID AND
P.UserID = R2.UserID AND
R1.Car = 'Civic' AND
R2.Car = 'Pinto';
```


UserID	Name	Job	Salary	UserID	Car
123	Jack	ТА	50000	123	Charger
345	Allison	TA	60000	567	Civic
567	Magda	Prof	90000	567	Pinto
789	Dan	Prof	100000		

```
All pairs of cars a person can drive

SELECT P.Name, R1.Car

FROM Payroll AS P, Regist AS R1, Regist AS R2

WHERE P.UserID = R1.UserID AND

P.UserID = R2.UserID AND

R1.Car = 'Civic' AND

R2.Car = 'Pinto';
```

Goals for Today

- We have started to build our SQL toolbox
 - Not just reading and filtering data anymore
 - Starting to answer complex questions
- Today we want to effectively summarize results

Aggregation functions

New class of SQL queries

Outline

- Aggregation functions
- GROUP BY and HAVING clauses in SQL
- The witnessing problem

 We need summaries of data because we are often trying to make decisions and succinctly convey information

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?"

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?" → COUNT

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?" \rightarrow COUNT
 - "Do I spend too much on coffee?"

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?" → COUNT
 - "Do I spend too much on coffee?" → SUM

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?" \rightarrow COUNT
 - "Do I spend too much on coffee?" → SUM
 - "Am I being ripped off by this car dealership?"

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?" \rightarrow COUNT
 - "Do I spend too much on coffee?" → SUM
 - "Am I being ripped off by this car dealership?" \rightarrow AVG

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?" \rightarrow COUNT
 - "Do I spend too much on coffee?" \rightarrow SUM
 - "Am I being ripped off by this car dealership?" \rightarrow AVG
 - "Who got the highest grade in the class?"

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?" \rightarrow COUNT
 - "Do I spend too much on coffee?" \rightarrow SUM
 - "Am I being ripped off by this car dealership?" \rightarrow AVG
 - "Who got the highest grade in the class?" \rightarrow MAX

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?" \rightarrow COUNT
 - "Do I spend too much on coffee?" → SUM
 - "Am I being ripped off by this car dealership?" \rightarrow AVG
 - "Who got the highest grade in the class?" \rightarrow MAX
 - "What's the cheapest food on the Ave?"

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - "How popular is this tv-show?" \rightarrow COUNT
 - "Do I spend too much on coffee?" → SUM
 - "Am I being ripped off by this car dealership?" \rightarrow AVG
 - "Who got the highest grade in the class?" \rightarrow MAX
 - "What's the cheapest food on the Ave?" \rightarrow MIN

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - COUNT
 - SUM
 - AVG
 - MAX
 - MIN

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - COUNT
 - SUM
 - AVG
 - MAX
 - MIN

Very common attributes found in DBMS

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - SELECT COUNT(*) FROM StreamingViews ...
 - SELECT **SUM**(cost) FROM CoffeeReceipts ...
 - SELECT AVG(price) FROM CarDealers ...
 - SELECT MAX(score) FROM StudentGrades ...
 - SELECT MIN(price) FROM AveLunchPrices ...

 $AGG(attr) \rightarrow computes AGG over non-NULL values AGG(DISTINCT attr) is also possible$

SELECT M

- We need summaries of data because we are often trying to make decisions and succinctly convey information
 - SELECT COUNT(*) FROM StreamingViews ...
 - SELECT **SU** (cost) FROM CoffeeReceipts ...
 - SELECT AV price) FROM CarDealers ...
 - SELECT M/ score) FROM StudentGrades ...
 - ice) FROM AveLunchPrices ...

COUNT(*) → # of rows regardless of NULL

What am I aggregating over in a SELECT-FROM-WHERE query?

Intuitively: "all the data"

What am I aggregating over in a SELECT-FROM-WHERE query?

Will this query get me the correct calculation for average salary of all people who own cars?

SELECT AVG(P.Salary)
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

Payroll		Regist			
UserID	Name	Job	Salary	UserID	Car
123	Jack	ТА	50000	123	Charger
345	Allison	ТА	60000	567	Civic
567	Magda	Prof	90000	567	Pinto
789	Dan	Prof	100000		

Will this query get me the correct calculation for average salary of all people who own cars?

SELECT AVG(P.Salary)
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

Join_{P.UserID=R.UserID}

UserID	Name	Job	Salary	UserID	Car
123	Jack	ТА	50000	123	Charger
345	Allison	TA	60000	567	Civic
567	Magda	Prof	90000	567	Pinto
789	Dan	Prof	100000		

SELECT AVG(P.Salary)
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car		
123	Jack	TA	50000	123	Charger		
567	Magda	Prof	90000	567	Civic		
567	Magda	Prof	90000	567	Pinto		
Join _{P.UserID=R.UserID}							

UserID	Name	Job	Salary	UserID	Car
123	Jack	ТА	50000	123	Charger
345	Allison	TA	60000	567	Civic
567	Magda	Prof	90000	567	Pinto
789	Dan	Prof	100000		

June 28, 2021

SELECT AVG(P.Salary)
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

Aggregate_{AVG(P.Salary)}

P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car		
123	Jack	TA	50000	123	Charger		
567	Magda	Prof	90000	567	Civic		
567	Magda	Prof	90000	567	Pinto		
Join _{P.UserID=R.UserID}							

UserID	Name	Job	Salary	UserID	Car
123	Jack	ТА	50000	123	Charger
345	Allison	TA	60000	567	Civic
567	Magda	Prof	90000	567	Pinto
789	Dan	Prof	100000		

SELECT AVG(P.Salary)
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

Aggregate_{AVG(P.Salary)}

P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car		
123	Jack	ТА	50000	123	Charger		
567	Magda	Prof	90000	567	Civic		
567	Magda	Prof	90000	567	Pinto		
Join _{P.UserID=R.UserID}							

UserID	Name	Job	Salary	UserID	Car
123	Jack	TA	50000	123	Charger
345	Allison	TA	60000	567	Civic
567	Magda	Prof	90000	567	Pinto
789	Dan	Prof	100000		

SELECT AVG(P.Salary)
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

AVG(P.Salary)

76666

Aggregate_{AVG(P.Salary)}

P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car		
123	Jack	ТА	50000	123	Charger		
567	Magda	Prof	90000	567	Civic		
567	Magda	Prof	90000	567	Pinto		
Join _{P.UserID=R.UserID}							

UserID	Name	Job	Salary	UserID	Car
123	Jack	TA	50000	123	Charger
345	Allison	TA	60000	567	Civic
567	Magda	Prof	90000	567	Pinto
789	Dan	Prof	100000		

SELECT AVG(P.Salary)
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

AVG(P.Salary)

76666

Not 70,000!

Aggregate_{AVG(P}.Salary)

P.UserID	P.Name	P.Job	P.Salary	R.UserID	R.Car		
123	Jack	ТА	50000	123	Charger		
567	Magda	Prof	90000	567	Civic		
567	Magda	Prof	90000	567	Pinto		
Join _{P.UserID=R.UserID}							

UserID	Name	Job	Salary	UserID	Car
123	Jack	TA	50000	123	Charger
345	Allison	TA	60000	567	Civic
567	Magda	Prof	90000	567	Pinto
789	Dan	Prof	100000		

June 28, 2021

SELECT AVG(P.Salary)
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

AVG(P.Salary)

76666

Aggregate_{AVG(P.Salary)}

90000 was counted twice...

P.UserID	P.Name	P.Job	P.Salary	R.U _riD	R.Car			
123	Jack	TA	50000	123	Charger			
567	Magda	Prof	90000	567	Civic			
567	Magda	Prof	90000	567	Pinto			
Join _{P.UserID=R.UserID}								

UserID	Name	Job	Salary	UserID	Car
123	Jack	TA	50000	123	Charger
345	Allison	TA	60000	567	Civic
567	Magda	Prof	90000	567	Pinto
789	Dan	Prof	100000		

June 28, 2021

Compute the average salary of all people who own cars? (Did not work, need subqueries for this) Compute the **minimum** salary of all people who own cars? (This will work, check for yourself!)

SELECT	MIN(P.Sa	alaı	cy)			
FROM	Payroll	AS	P,	Regist	AS	R
WHERE	P.UserII	=	R.U	JserID;		

Payroll				Regist	
UserID	Name	Job	Salary	UserID	Car
123	Jack	TA	50000	123	Charger
345	Allison	TA	60000	567	Civic
567	Magda	Prof	90000	567	Pinto
789	Dan	Prof	100000		

SELECT AVG(P.Salary)
FROM Payroll AS P, Regist AS R
WHERE P.UserID = R.UserID;

Regist R

Payroll P

Grouping

- SQL allows you to specify what groups your query operates over
 - Sometimes a "whole-table" aggregation is too coarsegrained
 - We can partition our data based on matching attribute values

Grouping

- SQL allows you to specify what groups your query operates over
 - Sometimes a "whole-table" aggregation is too coarsegrained
 - We can partition our data based on matching attribute values

UserID	Name	Job	Salary			
123	Jack	TA	50000	•••		
345	Allison	ТА	60000	GROUP	BY	Jok
567	Magda	Prof	90000	•••		
789	Dan	Prof	100000			

Grouping

- SQL allows you to specify what groups your query operates over
 - Sometimes a "whole-table" aggregation is too coarsegrained
 - We can partition our data based on matching attribute values

UserID	Name	Job	Salary			
123	Jack	ТА	50000			
345	Allison	ТА	60000	GROUP	BY	Job
567	Magda	Prof	90000			
789	Dan	Prof	100000			

Grouping Example

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

SELECT Job, MAX(Salary) FROM Payroll GROUP BY Job

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Job	MAX(Salary)
TA	60000
Prof	100000

Grouping on Multiple Attributes

SELECT Name, MAX(Salary) FROM Payroll GROUP BY Job, Name

UserID	Name	Job	Salary	Name	Salary
123	Jack	TA	50000	Jack	50000
345	Allison	TA	60000	Allison	60000
567	Magda	Prof	90000	Magda	90000
789	Dan	Prof	100000	Dan	100000

Filtering Groups with HAVING

SELECT Job, MAX(Salary) FROM Payroll GROUP BY Job HAVING MIN(Salary) > 80000

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Filtering Groups with HAVING

SELECT Job, MAX(Salary) FROM Payroll GROUP BY Job HAVING MIN(Salary) > 80000

UserID	Name	Job	Salary
123	Jack	ТА	50000
345	Allison	ТА	60000
567	Magda	Prof	90000
789	Dan	Prof	100000

Job	MAX(Salary)
Prof	100000

How is aggregation processed internally?

SELECT Job, MAX(Salary) FROM Payroll GROUP BY Job HAVING MIN(Salary) > 80000

How is aggregation processed internally?

SELECT Job, MAX(Salary)
 FROM Payroll
 GROUP BY Job
HAVING MIN(Salary) > 80000

Our first preview of Relational Algebra: "Having" applies **after** grouping

SELECT Job, MAX(Salary)

FROM Payroll

GROUP BY Job

HAVING MIN(Salary) > 80000

UserID	Name	Job	Salary

SELECT Job, MAX(Salary) FROM Payroll

GROUP BY Job

HAVING MIN(Salary) > 80000

Aggregate_{Job, MAX(P.Salary)→maxSal, MIN(P.Salary)→minSal}

UserID	Name	Job	Salary

SELECT Job, MAX(Salary) **FROM** Payroll

GROUP BY Job

HAVING MIN(Salary) > 80000

Job	maxSal	minSal
ТА	60000	50000
Prof	100000	90000

Aggregate $_{Job, MAX(P.Salary) \rightarrow maxSal, MIN(P.Salary) \rightarrow minSal}$

UserID	Name	Job	Salary

SELECT Job, MAX(Salary)
FROM Payroll
GROUP BY Job
HAVING MIN(Salary) > 80000

Job	maxSal	minSal
Prof	100000	90000
Hay	ving _{minsa}	1>80000
	Ommou	
Job	maxSal	minSal
Job TA	maxSal 60000	minSal 50000

Aggregate $_{Job, MAX(P.Salary) \rightarrow maxSal, MIN(P.Salary) \rightarrow minSal}$

UserID	Name	Job	Salary

SELECT Job, MAX(Salary)
FROM Payroll
GROUP BY Job
HAVING MIN(Salary) > 80000

Job	maxSal	minSal
Prof	100000	90000
Hay	ving _{minsa}	1>80000
	Ommou	
Job	maxSal	minSal
Job TA	maxSal 60000	minSal 50000

Aggregate $_{Job, MAX(P.Salary) \rightarrow maxSal, MIN(P.Salary) \rightarrow minSal}$

UserID	Name	Job	Salary

SELECT Job, MAX(Salary)
FROM Payroll
GROUP BY Job
HAVING MIN(Salary) > 80000

Job, maxSal

Job	maxSal	minSal
Prof	100000	90000
Hav	ving _{minSa}	l>80000

Job	maxSal	minSal
ТА	60000	50000
Prof	100000	90000

Aggregate_{Job, MAX(P.Salary)→maxSal, MIN(P.Salary)→minSal}

UserID	Name	Job	Salary

June	28,	2021
------	-----	------

SELECT Job, MAX(Salary)
FROM Payroll
GROUP BY Job
HAVING MIN(Salary) > 80000

	Job		maxSal		
	Prof		1000	000	
	Se	elect _{Job, maxS}		axSal	
ob		maxS	Sal	minS	al
rof		100000		9000	0
	Hav	ving _n	ıinSa	l>800	00
ob		maxS	Sal	minS	al

Ρ

	Παλθαι	
ТА	60000	50000
Prof	100000	90000

Aggregate_{Job, MAX(P.Salary)→maxSal, MIN(P.Salary)→minSal}

UserID	Name	Job	Salary

Preview: Relational Algebra

