
CSE 444: Database Internals

Section 9:
Distributed processing and

replication

Review in this section

1. Review Replication
2. Review 2- Phase Commit (2PC)
3. Questions on Lab 4/Lab 6 by Jingjing

More practice problems for hw6 in section 8

HW6 due today, you can submit in hard-copy
between 5 and 5:30 pm in CSE 344.

Replication

Eager (Synchronous)
vs. Lazy (Asynchronous)

• Eager: Updates are applied to all replicas of an object as part
of the original transaction (needs global locks, 2PC).

• Lazy: One replica is updated by the originating transaction.
Updates to other replicas propagate asynchronously, typically
as a separate transaction for each node.

Write A

Write B

Commit

Write A

Write B

Commit

Write A

Write B

Commit

Write A
Write B
Commit

Write A
Write B
Commit

Write A
Write B
Commit

Master/Primary
Master/Primary

Secondary

Secondary

Secondary

Secondary

Master vs. Group

• Master:
– Each object has a master node. Only the master can

update the primary copy of the object.
– All other replicas are read-only. If they want to update the

object request the master do the update.

• Group:
– Any node with a copy of a data item can update it (also

called “update anywhere”)

Propagation vs. Ownership

Eager Lazy

Master 1 transaction
1 object owner

N transactions
1 object owner

Group 1 transactions
N object owners

N transactions
N object owners

Summary
A. Synchronous/Eager
– Option A1: Use a master
– Option A2: Use a quorum (cluster)

B. Asynchronous/Lazy:
– Option B1: Use a master. All updates have to go to

the master first.
– Option B2: Allow updates to go everywhere. This is

multi-master.
Ref.
Jim Gray, Pat Helland, Patrick O'Neil, and Dennis Shasha. The Dangers of Replication and a

Solution. ACM SIGMOD Record (25)2, 1996

HW6, 2b

2PC Crash/Recovery Scenarios

Recovery Process
• At each active site a recovery process (RP) exists

– It processes messages from RPs at other sites, and
– handles all the transactions that were executing 2PC at the time of the

last failure of the site.

• At recovery from a crash, the RP at the recovering site
– reads the log on stable storage, and
– accumulates in virtual storage information relating to transactions

executing 2PC at the time of the crash.

• This information in virtual storage is used to
– answer queries from other sites about transactions that had their

coordinators at this site, and
– to send unsolicited information to other ‘subordinate sites’ for

transactions at this ‘coordinator site’

2PC Recovery Scenarios

1. If the recovery process finds that
– a transaction was executing at the time of the crash,
– And that no commit/prepare protocol log record had

been written
• Then the recovery process neither knows nor cares

whether it is dealing with a subordinate or the coordinator
of the transaction.

• It aborts that transaction by
– “undoing” its actions, if any, using the UNDO log records,
– writing an abort record,
– and “forgetting” it.

2PC Recovery Scenarios

2. If the recovery process at a coordinator finds a
transaction in the committing (resp. aborting) state

• It periodically tries to send the COMMIT (ABORT) to all the
subordinates that have not acknowledged and awaits their
ACKs.

• Once all the ACKs are received, the recovery process writes
the end record and “forgets” the transaction.

2PC Recovery Scenarios

3. If the coordinator process notices the failure of a
subordinate while waiting for the latter to send its vote

• then the former aborts the transaction (and follows the
necessary steps).

4. If the failure occurs when the coordinator is waiting to get
an ACK

• then the coordinator hands the transaction over to the
recovery process.

• (commit/abort state must be maintained)

2PC Recovery Scenarios

5. If a subordinate notices the failure of the coordinator
before the former sent a YES VOTE and moved into the
prepared state

• then it aborts the transaction (unilateral abort)

6. If the failure (of the coordinator) occurs after the
subordinate is in prepared state

• then the subordinate hands the transaction over to the
recovery process.

2PC Recovery Scenarios

7. When a recovery process receives an inquiry message
from a prepared subordinate site

• it looks at its information in virtual storage.
• If it has information that says the transaction is in the

aborting or committing state, then it sends the appropriate
response.

• What if no information is found?

2PC Recovery Scenarios
7 contd.
• How can such a situation arise when no info is found

• Both COMMITS and ABORTS are being acknowledged
• Inquiry is being made means that the inquirer had not received

and processed a COMMIT/ABORT before the inquiree “forgot”
the transaction.

• Such a situation comes about when
– (1) the inquiree sends out PREPARES,
– (2) it crashes before receiving all the votes and deciding to commit/abort,

and
– (3) on restart, it aborts the transaction and does not inform any of the

subordinates.

2PC Recovery Scenarios

7 contd.
• What to do?

• On restart, the recipient of an inquiry cannot tell whether it
is a coordinator or subordinate, if no commit protocol log
records exist for the transaction.

• Given this fact, the correct response to an inquiry in the no
information case is an ABORT.

2PC Recovery Scenarios

8. When the recovery process finds that it (the
subordinate) is in the prepared state for a particular
transaction

• It cannot take a unilateral decision
• The rest you have to figure out J
• Write in HW6 what happens from receiving the PREPARE

message at this subordinate
• Note that we assumed that a site will recover at some

point after a crash.

