CSE 444: Database Internals

Section 4:
Query Optimizer

Plan for Today

* Problem 1A, 1B: Estimating cost of a plan
— You try to compute the cost for 5 mins

— We will go over the solution together

* Problem 2: Selinger Optimizer
— We will do it together

1. Estimating Cost of a given plan

Student (sid, name, age, address)
Book(bid, title, author)
Checkout(sid, bid, date)

Query:
SELECT S.name
FROM Student S, Book B, Checkout C
WHERE S.sid = C.sid
AND B.bid = C.bid
AND B.author = 'Olden Fames'
AND S.age >=13
AND S.age <=19

S(sid,name,age,addr)
B(bid,title,author)

Clsid.bid date) Assumptions

Student: S Book: B Checkout: C

Sid, bid are foreign keys in C referencing S and B.
There are 10,000 Student records stored on 1,000 pages.
There are 50,000 Book records stored on 5,000 pages.

There are 300,000 Checkout records stored on 15,000
pages.

There are 500 different authors.

Student ages range from 7 to 24 uniformly (integers).

S(sid,name,age,addr) T(S)=10,000 B(S)=1,000 V(B,author) = 500

B(bid title,author) T(B)=50,000 B(B)=5,000 7 <= age <= 24
C(sid,bid,date) T(C)=300,000 B(C)=15,000

Physical Query Plan — 1A

(On the ﬂy) (d) IT hame

Q. Compute
1. the cost and
(On the ﬂy) (C) O 13<=age<=19 A author = ‘Olden Fames’ Cardina”ty In steps
(a) to (d)
(Tuple-based nested loop 2. the total cost

B inner) =1

bid Assumptions:
. Data is not sorted on any
attributes

(Block-nested loop, (2 (5

S outer, C inner)/ sid \

StudentS CheckoutC Book B
(File scan) (File scan) (File scan)

S(sid,name,age,addr)
B(bid,title,author)
C(sid,bid,date)

T(S)=10,000
T(B)=50,000
T(C)=300,000

Solution — 1A

(On the ﬂy) (d) IT hame

B(S)=1,000 V(B,author) = 500
B(C}\ A - N\N\N
(a)
Cost (1/0)

B(S) + B(S) * B(C)
= 1000 + 1000 * 15000
= 15,001,000

Cardinality
= T(S) * T(C)/V(S, sid)
= 300,000 (foreign key join)

(On the ﬂy) (C) G 13<=age<=19 A author = ‘Olden Fames’ (b)

(Tuple-based nested loop

B inner) =1)

AN

(Block-nested loop, ><

S outer, C mner/ \

Student S Checkout C

(File scan) (File scan)

Total cost = 1,515,001,000
Final cardinality = 234 (approx)

Book B
(File Scan)

Cost(l/O)
=T(S join C) * B(B)
= 300,000 * 5,000 =15*108

Cardinality
= T(S join C) * T(B)/ V(B, bid))
= 300,000 (foreign key join)

(c, d)

Cost(l/O)
= 0 (on the fly)

Cardinality:
300,000 * 1/500 * 7/18
= 234 (approx)
(assuming uniformity and
independence)

S(sid,name,age,addr) T(S)=10,000 B(S)=1,000 V(B,author) = 500

B(bid,title,author) T(B)=50,000 B(B)=5,000 7 <= age <= 24
C(sid.bid,date) T(C)=300,000 B(C)=15,000

Physical Query Plan — 1B

(On the fly) (Q) IT hame

Q. Compute
(On e) (f) 6 13<Lage<=19 1. the cost and
cardinality in steps
(Block nested loop—L— (g @) to (q) d P
S inner) sid 2. the total cost
Assumptlons
(d) ITsig(0n the fly) Unclustered B+tree index on
B.author
(Indexed'neSted |OOp, « Clustered B+tree index on
C.bid
B outer, C Inner) N (C) - Allindex pages are in memory

/ . Unlimited memory

(On the fly) (b) 1|‘I bid

(@) O author = ‘Olden Fames’ Checkout C Student S
Boc|>k B (Index scan) (File scan)

(Index scan) 7

S(sid,name,age,addr) T(S)=10,000 B(S)=1,000 V(B,author) = 500
B(bid,title,author): Un. B+ on author T(B)=50,000 B(B)=5,000 7 <= age <= 24
C(sid,bid,date): Cl. B+ on bid T(C)=300,000 B(C)=15,000

Solution — 1B S -

= T(B) / V(B, author)

©nthefly) (9) Il hame = 50,000/500 = 100 (unclustered)
cardinality = 100
(b) Cost=0
(On the fly) (f) G 13<tage<=19 cardinality = 100
(c)
(BlOCk nested |Oop . one index lookup per outer B tuple

i 1 book has 6 checkouts (uniformity)

(e)
S |n ner) i # C tuples per page = T(C)/B(C) = 20
iv. 6 tuples fit in at most 2 consecutive pages
(clustered) — or 1 if all fit on the page
(d) IT sjg(On the fly) Cost = 100 * 2= 200

cardinality = 100 * 6 = 600
(d) cost =0, cardinality= 600

(Indexed-nested Ioop

B outer, C inner) (c) Student S (9) Outer relation is already in memory,
/ bid need to scan S relation
(File scan) Cost B(S) = 1000
(Onthefly) (b) r|1 bid Cardinality = 600
(8) O author = ‘Olden Fames’ CheCkOUt C (f) Cost =0
| Cardinality = 600 * 7/18 = 234
A B (approx)

Total cost = 1300 (compare wuth 1,515,001,000 in 1A)

: . (g) cost= 0, cardinality = 234
Final cardinality = 234 (approx) (same as 1A!)

2. Selinger Optimization Example

Sailors (sid, sname, srating, age)
Boats(bid, bname, color)
Reserves(sid, bid, date, rname)

Query:
SELECT S.sid, R.rname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid = R.sid
AND B.bid = R.bid
AND B.color = red

Example is from the Ramakrishnan book

S (sid, sname, srating, age)
B (bid, bname, color)

R (sid, bid, date, rname) Ava | I a b | e I n d exes

e Sailors:S Boats: B Reserves: R

* Sid, bid foreign key in R referencing S and B resp.
e Sailors
— Unclustered B+ tree index on sid
— Unclustered hash index on sid
* Boats
— Unclustered B+ tree index on color
— Unclustered hash index on color
* Reserves

— Unclustered B+ tree on sid
— Clustered B+ tree on bid

S (sid, sname, srating, age): 1. B+tree - sid, 2. hash index - sid SELECT S.sid, R.rname
B (bid, bname, color): 1. B+tree - color, 2. hash index - color WHERE S.sid = R.sid
R (sid, bid, date, rname) : 1. B+tree - sid, 2. Clustered B+tree - bid ~ B.bid = R.bid, B.color = red

First Pass

Where to start?

— How to access each relation, assuming it would be the first
relation being read

— File scan is also available!
Sailors?

— No selection matching an index, use File Scan (nho overhead)
Reserves?

— Same as Sailors

Boats?

— Hash index on color, matches B.color = red

— B+ tree also matches the predicate, but hash index is cheaper
* B+ tree would be cheaper for range queries

S (sid, sname, srating, age): 1. B+tree - sid, 2. hash index - sid SELECT S.sid, R.rname
B (bid, bname, color): 1. B+tree - color, 2. hash index - color WHERE S.sid = R.sid
R (sid, bid, date, rname) : 1. B+tree - sid, 2. Clustered B+tree - bid ~ B.bid = R.bid, B.color = red

Second Pass

e \What next?

— For each of the plan in Pass 1 taken as outer, consider joining
another relation as inner

 What are the combinations? How many new options?

R (file scan) B (B+-color) (hash color) (File scan)
R (file scan) S (B+-sid) (hash sid) .
S (file scan) B (B+-color) (hash color) ’
S (file scan) R (B+-sid) (Cl. B+ bid) y
B (hash index) R (B+-sid) (Cl. B+ bid ’
B (hash index) S (B+-sid) (hash sid) e

S (sid, sname, srating, age): 1. B+tree - sid, 2. hash index - sid SELECT S.sid, R.rname
B (bid, bname, color): 1. B+tree - color, 2. hash index - color WHERE S.sid = R.sid
R (sid, bid, date, rname) : 1. B+tree - sid, 2. Clustered B+tree - bid ~ B.bid = R.bid, B.color = red

Second Pass

e Which outer-inner combinations can be discarded?

— B,SandS§, B: Cartesian product!
mm
R (file scan) (B+-color) (hash color) (File scan)
R (file scan) S (B+-sid) (hash sid) 7
S (file scan) R (B+-sid) (Cl. B+ bid) X
B (hash index) R (B+-sid) (Cl. B+ bid): ’

OPTION 3 is not shown on next slide,
expected to be more expensive

S (sid, sname, srating, age): 1. B+tree - sid, 2. hash index - sid SELECT S.sid, R.rname
B (bid, bname, color): 1. B+tree - color, 2. hash index - color WHERE S.sid = R.sid
R (sid, bid, date, rname) : 1. B+tree - sid, 2. Clustered B+tree - bid ~ B.bid = R.bid, B.color = red

R (file scan) S (B+-sid) Slower than

hash-index

(need Sailor tuples matching
S.sid = value, where value
comes from an outer R tuple)

R (file scan) B (B+-color) Not useful

S (file scan) R (B+-sid) Consider all join
methods

B (hash R (B+-sid) Not useful

index)

* (R, S)and (S, R)
* (R, B) and (B, R)

Keep the least cost plan between

(hash sid): likely to be faster

2A. Index nested loop join

2B Sort Merge based join: (sorted by
sid)

(hash color) Select those tuples where
B.color =red using the color index (note:
no index on bid)

(Cl. B+ bid) Not useful

(Cl. B+ bid)

2A. Index nested loop join

2B. Sort-merge join
(sorted on bid)

S (sid, sname, srating, age): 1. B+tree - sid, 2. hash index - sid SELECT S.sid, R.rname
B (bid, bname, color): 1. B+tree - color, 2. hash index - color WHERE S.sid = R.sid
R (sid, bid, date, rname) : 1. B+tree - sid, 2. Clustered B+tree - bid ~ B.bid = R.bid, B.color = red

Third Pass

e Join with the third relation

* For each option retained in Pass 2, join with the third
relation

* E.g.

— Boats (B+tree on color) — sort-merged-join — Reserves
(B+tree on bid)

— Join the result with Sailors (B+ tree on sid) using sort-merge-
join
* Need to sort (B join R) by sid, was sorted on bid before
e OQOutputs tuples sorted by sid
* Not useful here, but will be useful if we had GROUP BY on sid

* In general, a higher cost “interesting” plans may be retained (e.g.
sort operator at root, grouping attribute in group by query later, join
attribute in a later join)

Homework 3

* Query Plan Cost Computation
* Query Optimization

