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Database System Internals

CSE 444 – MapReduce

MapReduce



Parallel Data Processing

OLAP: Online Analytical Processing
§Big queries: joins, group-by, large data
§No updates
§Use parallelism/distribution to improve 

performance
§Challenge: optimize ONE query
OLTP: Online Transaction Processing
§Big data, but simple query: many simple updates
§Distribute data to support large workloads
§Challenge: ACID or something weaker
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This lecture
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Data model? Relational

Scaleup goal?       OLAP

Architecture? Shared-Nothing
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Data model? Relational

text/kv-pairs

Scaleup goal?       OLAP

Architecture? Shared-Nothing



References

§MapReduce: Simplified Data Processing on Large 
Clusters. Jeffrey Dean and Sanjay Ghemawat. 
OSDI'04

§Mining of Massive Datasets, by Rajaraman and 
Ullman, http://i.stanford.edu/~ullman/mmds.html

• Map-reduce (Section 20.2); 
• Chapter 2 (Sections 1,2,3 only)
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A Note

§MapReduce is obsolete now
Interesting only from a historical perspective

§ It has had an important influence, still visible today, 
but newer systems do a better job at adopting 
traditional database principles:

• Spark
• Snowflake -- standard highly distributed SQL 
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Map Reduce Review

§Google: [Dean 2004]
§Open source implementation: Hadoop

§MapReduce = high-level programming model and 
implementation for large-scale parallel data 
processing
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MapReduce Motivation

§Not designed to be a DBMS

§But to simplify task of writing parallel programs
• Simple programming model that applies to many problems

§Hides messy details in runtime library:
• Automatic parallelization
• Load balancing
• Network and disk transfer optimizations
• Handling of machine failures
• Robustness
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Data Processing at Massive Scale

§Massive parallelism: 
• 100s, or 1000s, or 10000s servers (think data center)
• Many hours

§Failure:
• If medium-time-between-failure is 1 year
• Then 10000 servers have one failure / hour
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Data Storage: GFS/HDFS

§MapReduce job input is a file

§Distributed file system:
• GFS: Google File System
• HDFS: Hadoop File System

§File is split into “blocks” or “chunks”: 64MB or so
§Blocks are replicated & stored on random 

machines
§Files are append only
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MapReduce: Data Model

Files !

A file = a bag of (key, value) pairs

A MapReduce program:
§ Input: a bag of (inputkey, value)pairs
§Output: a bag of (outputkey, value)pairs
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Step 1: the MAP Phase

User provides the MAP-function:

§ Input: (input key, value)

§ Ouput:  bag of (intermediate key, value)

System applies map function in parallel to all
(input key, value) pairs in the input file
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Step 2: the REDUCE Phase

User provides the REDUCE function:

§ Input: (intermediate key, bag of values)

§Output:
• Original MR paper: bag of output (values)
• Hadoop: bag of (output key, values)

System groups all pairs with the same intermediate 
key, and passes the bag of values to REDUCE
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Example

§Counting the number of occurrences of each word 
in a large collection of documents

§Each Document
• The key = document id (did)
• The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));
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MAP REDUCE
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Jobs vs. Tasks

§A MapReduce Job
• One single “query”, e.g. count the words in all docs
• More complex queries may consists of multiple jobs

§A Map Task, or a Reduce Task
• A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker
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Workers

§A worker is a process that executes one task at a 
time

§Typically there is one worker per processor, hence 
4 or 8 per node

§Often talk about “slots”
• E.g., Each server has 2 map slots and 2 reduce slots
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MAP Tasks REDUCE Tasks
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Parallel MapReduce Details
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Map

(Shuffle)

Reduce

Data not 
necessarily local

Intermediate data 
goes to local  disk

Output to disk, 
replicated in cluster

File system: GFS 
or HDFS

Task

Task
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MapReduce Implementation
§There is one master node
§ Input file gets partitioned further into  M’ splits

• Each split is a contiguous piece of the input file
• By default splits correspond to blocks

§Master assigns workers (=servers) to the M’ map 
tasks, keeps track of their progress

§Workers write their output to local disk
§Output of each map task is partitioned into R regions
§Master assigns workers to the R reduce tasks
§Reduce workers read regions from the map workers’ 

local disks 
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Local storage`

MapReduce Phases

22CSE 444 – MapReduceMay 26, 2022



Skew
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Skew

CSE 444 – MapReduce 25

0 50 100 150 200 250 300 350
Time (seconds)

Ta
sk

s

Shuffle Sort ExecM
A
P

R
E
D
U
C
E

PageRank Application
• Reduce tasks do not begin until all map tasks are finished

May 26, 2022

Orange line is one reduce task 
Can’t start until all maps finished



Skew
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Skew
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After 70 seconds, all but 
one task are finished…

So all this time is waiting 
on one worker to finish



Hadoop dashboard example (“datadog”)
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Interesting Implementation Details

§Worker failure:
• Master pings workers periodically,
• If down then reassigns its task to another worker
• (≠ a parallel DBMS restarts whole query)

§How many map and reduce tasks:
• Larger is better for load balancing
• But more tasks also add overheads
• (≠ parallel DBMS spreads ops across all nodes)
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Interesting Implementation Details

Backup tasks:
§ Straggler = a machine that takes unusually long 

time to complete one of the last tasks. Eg:
• Bad disk forces frequent correctable errors (30MB/s à

1MB/s)
• The cluster scheduler has scheduled other tasks on that 

machine
§Stragglers are a main reason for slowdown
§Solution: pre-emptive backup execution of the last 

few remaining in-progress tasks
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The State of MapReduce Systems

§ Lots of extensions to address limitations
• Capabilities to write DAGs of MapReduce jobs
• Declarative languages 
• Ability to read from structured storage (e.g., indexes)
• Etc.

§Most companies use both types of engines (MR 
and DBMS), with increased integration

§New systems emerged which improve over 
MapReduce: e.g. Spark
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Relational Queries over MR

§Query à query plan

§Each operator à one MapReduce job

CSE 444 – MapReduce 32May 26, 2022



GroupBy in MapReduce
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SELECT word, sum(1)
FROM Doc
GROUP BY word

Doc(key, word)

MAP=GROUP BY, REDUCE=Aggregate

MapReduce IS A GroupBy!
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Joins in MapReduce

§ If MR is GROUP-BY plus AGGREGATE, then how 
do we compute R(A,B) ⋈ S(B,C) using MR?
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Joins in MapReduce

§ If MR is GROUP-BY plus AGGREGATE, then how 
do we compute R(A,B) ⋈ S(B,C) using MR?

§Answer:
• Map: group R by R.B, group S by S.B

• Input = either a tuple R(a,b) or a tuple S(b,c)
• Output = (b,R(a,b)) or (b,S(b,c)) respectively

• Reduce:
• Input = (b,{R(a1,b),R(a2,b),…,S(b,c1),S(b,c2),…})
• Output = {R(a1,b),R(a2,b),…} × {S(b,c1),S(b,c2),…}
• In practice: improve the reduce function (next…)
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Join in MR
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map([String key], String value):
// value.relation is either ‘Users’ or ‘Pages’
if value.relation=‘Users’:
EmitIntermediate(value.name, (1, value));

else // value.relation=‘Pages’:
EmitIntermediate(value.userName, (2, value));

reduce(String user, Iterator values):
Users = empty;  Pages = empty;
for each v in values:

if v.type = 1: Users.insert(v)
else Pages.insert(v);

for v1 in Users, for v2 in Pages
Emit(v1,v2);

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

Users(name, age)
Pages(userName, url)
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Join in MR

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;
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Users(name, age)
Pages(userName, url)



Join in MR

Pages Users
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Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;
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Users(name, age)
Pages(userName, url)



Join in MR

Pages Users

Map 1

Users
block n

Map 2

Pages
block m
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Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;
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Users(name, age)
Pages(userName, url)



Join in MR

Pages Users

Map 1

Users
block n

Map 2

Pages
block m

(1, user)

(2, userName)

Means: it comes
from relation #1

Means: it comes
from relation #2
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Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;
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Join in MR

Pages Users

Map 1

Users
block n

Map 2

Pages
block m

Reducer 1

Reducer 2

(1, user)

(2, userName)

(1, fred)
(2, fred)
(2, fred)

(1, jane)
(2, jane)
(2, jane)
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Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;
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Users(name, age)
Pages(userName, url)



Parallel DBMS vs MapReduce

Parallel DBMS
§Relational data model and schema
§Declarative query language: SQL
§Many pre-defined operators: relational algebra
§Can easily combine operators into complex 

queries
§Query optimization, indexing, and physical tuning
§Streams data from one operator to the next without 

blocking
§Can do more than just run queries: Data 

management
• Updates and transactions, constraints, security, etc.
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MapReduce: A major step backwards article by David DeWitt



Parallel DBMS vs MapReduce
MapReduce
§ Data model is a file with key-value pairs!
§ No need to “load data” before processing it
§ Easy to write user-defined operators
§ Can easily add nodes to the cluster (no need to even 

restart)
§ Uses less memory since processes one key-group at a 

time
§ Intra-query fault-tolerance thanks to results on disk
§ Intermediate results on disk also facilitate scheduling
§ Handles adverse conditions: e.g., stragglers
§ Arguably more scalable… but also needs more 

nodes!
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