
1May 26, 2022

Database System Internals

CSE 444 – MapReduce

MapReduce

Parallel Data Processing

OLAP: Online Analytical Processing
§Big queries: joins, group-by, large data
§No updates
§Use parallelism/distribution to improve

performance
§Challenge: optimize ONE query
OLTP: Online Transaction Processing
§Big data, but simple query: many simple updates
§Distribute data to support large workloads
§Challenge: ACID or something weaker

May 26, 2022 CSE 444 – MapReduce 3

This lecture

CSE 444 – MapReduce 4May 26, 2022

Data model? Relational

Scaleup goal? OLAP

Architecture? Shared-Nothing

This lecture

CSE 444 – MapReduce 5May 26, 2022

Data model? Relational

text/kv-pairs

Scaleup goal? OLAP

Architecture? Shared-Nothing

References

§MapReduce: Simplified Data Processing on Large
Clusters. Jeffrey Dean and Sanjay Ghemawat.
OSDI'04

§Mining of Massive Datasets, by Rajaraman and
Ullman, http://i.stanford.edu/~ullman/mmds.html

• Map-reduce (Section 20.2);
• Chapter 2 (Sections 1,2,3 only)

May 26, 2022 CSE 444 – MapReduce 6

http://i.stanford.edu/~ullman/mmds.html

A Note

§MapReduce is obsolete now
Interesting only from a historical perspective

§ It has had an important influence, still visible today,
but newer systems do a better job at adopting
traditional database principles:

• Spark
• Snowflake -- standard highly distributed SQL

May 26, 2022 CSE 444 – MapReduce 7

Map Reduce Review

§Google: [Dean 2004]
§Open source implementation: Hadoop

§MapReduce = high-level programming model and
implementation for large-scale parallel data
processing

May 26, 2022 CSE 444 – MapReduce 8

MapReduce Motivation

§Not designed to be a DBMS

§But to simplify task of writing parallel programs
• Simple programming model that applies to many problems

§Hides messy details in runtime library:
• Automatic parallelization
• Load balancing
• Network and disk transfer optimizations
• Handling of machine failures
• Robustness

May 26, 2022 CSE 444 – MapReduce 9

content in part from: Jeff Dean

Data Processing at Massive Scale

§Massive parallelism:
• 100s, or 1000s, or 10000s servers (think data center)
• Many hours

§Failure:
• If medium-time-between-failure is 1 year
• Then 10000 servers have one failure / hour

May 26, 2022 CSE 444 – MapReduce 10

Data Storage: GFS/HDFS

§MapReduce job input is a file

§Distributed file system:
• GFS: Google File System
• HDFS: Hadoop File System

§File is split into “blocks” or “chunks”: 64MB or so
§Blocks are replicated & stored on random

machines
§Files are append only

May 26, 2022 CSE 444 – MapReduce 11

MapReduce: Data Model

Files !

A file = a bag of (key, value) pairs

A MapReduce program:
§ Input: a bag of (inputkey, value)pairs
§Output: a bag of (outputkey, value)pairs

May 26, 2022 CSE 444 – MapReduce 12

Step 1: the MAP Phase

User provides the MAP-function:

§ Input: (input key, value)

§ Ouput: bag of (intermediate key, value)

System applies map function in parallel to all
(input key, value) pairs in the input file

May 26, 2022 CSE 444 – MapReduce 13

Step 2: the REDUCE Phase

User provides the REDUCE function:

§ Input: (intermediate key, bag of values)

§Output:
• Original MR paper: bag of output (values)
• Hadoop: bag of (output key, values)

System groups all pairs with the same intermediate
key, and passes the bag of values to REDUCE

May 26, 2022 CSE 444 – MapReduce 14

Example

§Counting the number of occurrences of each word
in a large collection of documents

§Each Document
• The key = document id (did)
• The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

15CSE 444 – MapReduceMay 26, 2022

MAP REDUCE
(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

16
CSE 444 – MapReduce

May 26, 2022

Jobs vs. Tasks

§A MapReduce Job
• One single “query”, e.g. count the words in all docs
• More complex queries may consists of multiple jobs

§A Map Task, or a Reduce Task
• A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker

CSE 444 – MapReduce 17May 26, 2022

Workers

§A worker is a process that executes one task at a
time

§Typically there is one worker per processor, hence
4 or 8 per node

§Often talk about “slots”
• E.g., Each server has 2 map slots and 2 reduce slots

CSE 444 – MapReduce 18May 26, 2022

MAP Tasks REDUCE Tasks

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

19CSE 444 – MapReduceMay 26, 2022

Parallel MapReduce Details

CSE 444 – MapReduce 20

Map

(Shuffle)

Reduce

Data not
necessarily local

Intermediate data
goes to local disk

Output to disk,
replicated in cluster

File system: GFS
or HDFS

Task

Task

May 26, 2022

MapReduce Implementation
§There is one master node
§ Input file gets partitioned further into M’ splits

• Each split is a contiguous piece of the input file
• By default splits correspond to blocks

§Master assigns workers (=servers) to the M’ map
tasks, keeps track of their progress

§Workers write their output to local disk
§Output of each map task is partitioned into R regions
§Master assigns workers to the R reduce tasks
§Reduce workers read regions from the map workers’

local disks

21CSE 444 – MapReduceMay 26, 2022

Local storage`

MapReduce Phases

22CSE 444 – MapReduceMay 26, 2022

Skew

CSE 444 – MapReduce 23

0 50 100 150 200 250 300 350
Time (seconds)

Ta
sk

s

Shuffle Sort ExecM
A
P

R
E
D
U
C
E

PageRank Application
• Reduce tasks do not begin until all map tasks are finished

May 26, 2022

Skew

CSE 444 – MapReduce 24

0 50 100 150 200 250 300 350
Time (seconds)

Ta
sk

s

Shuffle Sort ExecM
A
P

R
E
D
U
C
E

PageRank Application
• Reduce tasks do not begin until all map tasks are finished

May 26, 2022

Blue line is one map task
on a partition of data

Skew

CSE 444 – MapReduce 25

0 50 100 150 200 250 300 350
Time (seconds)

Ta
sk

s

Shuffle Sort ExecM
A
P

R
E
D
U
C
E

PageRank Application
• Reduce tasks do not begin until all map tasks are finished

May 26, 2022

Orange line is one reduce task
Can’t start until all maps finished

Skew

CSE 444 – MapReduce 26

0 50 100 150 200 250 300 350
Time (seconds)

Ta
sk

s

Shuffle Sort ExecM
A
P

R
E
D
U
C
E

PageRank Application
• Reduce tasks do not begin until all map tasks are finished

May 26, 2022

After 70 seconds, all but
one task are finished…

Skew

CSE 444 – MapReduce 27

0 50 100 150 200 250 300 350
Time (seconds)

Ta
sk

s

Shuffle Sort ExecM
A
P

R
E
D
U
C
E

PageRank Application
• Reduce tasks do not begin until all map tasks are finished

May 26, 2022

After 70 seconds, all but
one task are finished…

So all this time is waiting
on one worker to finish

Hadoop dashboard example (“datadog”)

May 26, 2022 CSE 444 – MapReduce 28

Interesting Implementation Details

§Worker failure:
• Master pings workers periodically,
• If down then reassigns its task to another worker
• (≠ a parallel DBMS restarts whole query)

§How many map and reduce tasks:
• Larger is better for load balancing
• But more tasks also add overheads
• (≠ parallel DBMS spreads ops across all nodes)

CSE 444 – MapReduce 29May 26, 2022

Interesting Implementation Details

Backup tasks:
§ Straggler = a machine that takes unusually long

time to complete one of the last tasks. Eg:
• Bad disk forces frequent correctable errors (30MB/s à

1MB/s)
• The cluster scheduler has scheduled other tasks on that

machine
§Stragglers are a main reason for slowdown
§Solution: pre-emptive backup execution of the last

few remaining in-progress tasks

CSE 444 – MapReduce 30May 26, 2022

The State of MapReduce Systems

§ Lots of extensions to address limitations
• Capabilities to write DAGs of MapReduce jobs
• Declarative languages
• Ability to read from structured storage (e.g., indexes)
• Etc.

§Most companies use both types of engines (MR
and DBMS), with increased integration

§New systems emerged which improve over
MapReduce: e.g. Spark

CSE 444 – MapReduce 31May 26, 2022

Relational Queries over MR

§Query à query plan

§Each operator à one MapReduce job

CSE 444 – MapReduce 32May 26, 2022

GroupBy in MapReduce

CSE 444 – MapReduce 33

SELECT word, sum(1)
FROM Doc
GROUP BY word

Doc(key, word)

MAP=GROUP BY, REDUCE=Aggregate

MapReduce IS A GroupBy!

May 26, 2022

Joins in MapReduce

§ If MR is GROUP-BY plus AGGREGATE, then how
do we compute R(A,B) ⋈ S(B,C) using MR?

May 26, 2022 CSE 444 – MapReduce 34

Joins in MapReduce

§ If MR is GROUP-BY plus AGGREGATE, then how
do we compute R(A,B) ⋈ S(B,C) using MR?

§Answer:
• Map: group R by R.B, group S by S.B

• Input = either a tuple R(a,b) or a tuple S(b,c)
• Output = (b,R(a,b)) or (b,S(b,c)) respectively

• Reduce:
• Input = (b,{R(a1,b),R(a2,b),…,S(b,c1),S(b,c2),…})
• Output = {R(a1,b),R(a2,b),…} × {S(b,c1),S(b,c2),…}
• In practice: improve the reduce function (next…)

May 26, 2022 CSE 444 – MapReduce 35

Join in MR

CSE 444 – MapReduce 36

map([String key], String value):
// value.relation is either ‘Users’ or ‘Pages’
if value.relation=‘Users’:
EmitIntermediate(value.name, (1, value));

else // value.relation=‘Pages’:
EmitIntermediate(value.userName, (2, value));

reduce(String user, Iterator values):
Users = empty; Pages = empty;
for each v in values:

if v.type = 1: Users.insert(v)
else Pages.insert(v);

for v1 in Users, for v2 in Pages
Emit(v1,v2);

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

Users(name, age)
Pages(userName, url)

May 26, 2022

Join in MR

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

CSE 444 – MapReduce 37May 26, 2022

Users(name, age)
Pages(userName, url)

Join in MR

Pages Users

CSE 444 – MapReduce 38

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

May 26, 2022

Users(name, age)
Pages(userName, url)

Join in MR

Pages Users

Map 1

Users
block n

Map 2

Pages
block m

CSE 444 – MapReduce 39

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

May 26, 2022

Users(name, age)
Pages(userName, url)

Join in MR

Pages Users

Map 1

Users
block n

Map 2

Pages
block m

(1, user)

(2, userName)

Means: it comes
from relation #1

Means: it comes
from relation #2

CSE 444 – MapReduce 40

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

May 26, 2022

Users(name, age)
Pages(userName, url)

Join in MR

Pages Users

Map 1

Users
block n

Map 2

Pages
block m

Reducer 1

Reducer 2

(1, user)

(2, userName)

(1, fred)
(2, fred)
(2, fred)

(1, jane)
(2, jane)
(2, jane)

CSE 444 – MapReduce 41

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (userName, url);
Jnd = join Users by name, Pages by userName;

May 26, 2022

Users(name, age)
Pages(userName, url)

Parallel DBMS vs MapReduce

Parallel DBMS
§Relational data model and schema
§Declarative query language: SQL
§Many pre-defined operators: relational algebra
§Can easily combine operators into complex

queries
§Query optimization, indexing, and physical tuning
§Streams data from one operator to the next without

blocking
§Can do more than just run queries: Data

management
• Updates and transactions, constraints, security, etc.

May 26, 2022 CSE 444 – MapReduce 42

MapReduce: A major step backwards article by David DeWitt

Parallel DBMS vs MapReduce
MapReduce
§ Data model is a file with key-value pairs!
§ No need to “load data” before processing it
§ Easy to write user-defined operators
§ Can easily add nodes to the cluster (no need to even

restart)
§ Uses less memory since processes one key-group at a

time
§ Intra-query fault-tolerance thanks to results on disk
§ Intermediate results on disk also facilitate scheduling
§ Handles adverse conditions: e.g., stragglers
§ Arguably more scalable… but also needs more

nodes!

May 26, 2022 CSE 444 – MapReduce 43

MapReduce: A major step backwards article by David DeWitt

