
1May 4, 2022

Database System Internals

CSE 444 – Optimistic CC

Optimistic Concurrency Control

Announcements

§Quizzes are cancelled this quarter
• Less cognitive load
• Hopefully gives more time to think about

homework/labs

May 4, 2022 CSE 444 – Optimistic CC 2

About Lab 3

§ In lab 3, we implement transactions
§ Focus on concurrency control

• Want to run many transactions at the same time
• Transactions want to read and write same pages
• Will use locks to ensure conflict serializable execution
• Use strict 2PL

§ Build your own lock manager
• Understand how locking works in depth
• Ensure transactions rather than threads hold locks

• Many threads can execute different pieces of the same transaction
• Need to detect deadlocks and resolve them by aborting a

transaction
• But use Java synchronization to protect your data

structures
CSE 444 – Optimistic CC 3May 4, 2022

Recap

§ Several types of schedules:
• Serializable, conflict serializable, view serializable
• Recoverable, without cascading aborts

§2PL guarantees conflict serializable schedules

§ Strict 2PL also guarantees no-cascading-aborts

§ Locking manager: inserts lock/unlock, manages
locks

§ Types of locks: shared, exclusive

May 4, 2022 CSE 444 – Optimistic CC 4

Isolation Levels in SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

CSE 444 – Optimistic CC 5

ACID
May 4, 2022

1. Isolation Level: Dirty Reads

§ “Long duration” WRITE locks
• Strict 2PL

§No READ locks
• Read-only transactions are never delayed

CSE 444 – Optimistic CC 6

Possible problems:
dirty and inconsistent reads

May 4, 2022

2. Isolation Level: Read Committed

§ “Long duration” WRITE locks
• Strict 2PL

§ “Short duration” READ locks
• Only acquire lock while reading (not 2PL)

CSE 444 – Optimistic CC 7

Unrepeatable reads
When reading same element twice,
may get two different values

May 4, 2022

3. Isolation Level: Repeatable Read

§ “Long duration” WRITE locks
• Strict 2PL

§ “Long duration” READ locks
• Strict 2PL

May 4, 2022 CSE 444 – Optimistic CC 8

This is not serializable yet !!! Why ?

4. Isolation Level Serializable

§ “Long duration” WRITE locks
• Strict 2PL

§ “Long duration” READ locks
• Strict 2PL

§ Predicate locking
• To deal with phantoms

CSE 444 – Optimistic CC 9May 4, 2022

READ-ONLY Transactions

CSE 444 – Optimistic CC 10

Client 1: START TRANSACTION
INSERT INTO SmallProduct(name, price)

SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE FROM Product
WHERE price <=0.99

COMMIT

Client 2: SET TRANSACTION READ ONLY
START TRANSACTION
SELECT count(*)
FROM Product

SELECT count(*)
FROM SmallProduct
COMMIT

May improve
performance

May 4, 2022

11

Commercial Systems

Always check documentation!
§DB2: Strict 2PL
§ SQL Server:

• Strict 2PL for standard 4 levels of isolation
• Multiversion concurrency control for snapshot

isolation
§ PostgreSQL: Snapshot isolation; recently:

seralizable Snapshot isolation (!)
§Oracle: Snapshot isolation

CSE 444 – Optimistic CC
May 4, 2022

Pessimistic vs. Optimistic

§ Pessimistic CC (locking)
• Prevents unserializable schedules
• Never abort for serializability (but may abort for

deadlocks)
• Best for workloads with high levels of contention

§Optimistic CC (timestamp, multi-version,
validation)

• Assume schedule will be serializable
• Abort when conflicts detected
• Best for workloads with low levels of contention

CSE 444 – Optimistic CC 12May 4, 2022

Outline

§Concurrency control by timestamps (18.8)

§Concurrency control by validation (18.9)

§ Snapshot Isolation

CSE 444 – Optimistic CC 13May 4, 2022

Timestamps

§ Each transaction receives unique timestamp TS(T)

Could be:

§ The system’s clock
§A unique counter, incremented by the scheduler

CSE 444 – Optimistic CC 14May 4, 2022

Timestamps

CSE 444 – Optimistic CC 15

The timestamp order defines
the serialization order of the transaction

Main invariant:

Will generate a schedule that is view-equivalent
to a serial schedule, and recoverable

May 4, 2022

Main Idea

§Scheduler receives a request, rT(X) or wT(X)
§Should it allow it to proceed? Wait? Abort?
§Consider these cases:

May 4, 2022 CSE 444 – Optimistic CC 16

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Should we
allow the OP?

Main Idea

§Scheduler receives a request, rT(X) or wT(X)
§Should it allow it to proceed? Wait? Abort?
§Consider these cases:

May 4, 2022 CSE 444 – Optimistic CC 17

START(U), ...,START(T), ..., wU(X), ..., rT(X)

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Should we
allow the OP?

Main Idea

§Scheduler receives a request, rT(X) or wT(X)
§Should it allow it to proceed? Wait? Abort?
§Consider these cases:

May 4, 2022 CSE 444 – Optimistic CC 18

START(U), ...,START(T), ..., wU(X), ..., rT(X)

OK

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Should we
allow the OP?

Main Idea

§Scheduler receives a request, rT(X) or wT(X)
§Should it allow it to proceed? Wait? Abort?
§Consider these cases:

May 4, 2022 CSE 444 – Optimistic CC 19

START(T), ...,START(U), ..., wU(X), ..., rT(X)

START(U), ...,START(T), ..., wU(X), ..., rT(X)

OK

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Should we
allow the OP?

Main Idea

§Scheduler receives a request, rT(X) or wT(X)
§Should it allow it to proceed? Wait? Abort?
§Consider these cases:

May 4, 2022 CSE 444 – Optimistic CC 20

START(T), ...,START(U), ..., wU(X), ..., rT(X)
Too late

START(U), ...,START(T), ..., wU(X), ..., rT(X)

OK

wU(X) . . . rT(X)
rU(X) . . . wT(X)
wU(X) . . . wT(X)

Should we
allow the OP?

Timestamps

With each element X, associate
§RT(X) = the highest timestamp of any transaction U

that read X

§WT(X) = the highest timestamp of any transaction U
that wrote X

§C(X) = the commit bit: true when transaction with
highest timestamp that wrote X committed

21CSE 444 – Optimistic CCMay 4, 2022

Timestamps

With each element X, associate
§RT(X) = the highest timestamp of any transaction U

that read X

§WT(X) = the highest timestamp of any transaction U
that wrote X

§C(X) = the commit bit: true when transaction with
highest timestamp that wrote X committed

If transactions abort, we must reset the timestamps

22CSE 444 – Optimistic CCMay 4, 2022

Main Idea

For any rT(X) or wT(X) request, check for conflicts:

§wU(X) . . . rT(X)
§ rU(X) . . . wT(X)
§wU(X) . . . wT(X)

May 4, 2022 CSE 444 – Optimistic CC 23

How do we check
if Read too late ?

Write too
late ?

Main Idea

For any rT(X) or wT(X) request, check for conflicts:

§wU(X) . . . rT(X)
§ rU(X) . . . wT(X)
§wU(X) . . . wT(X)

May 4, 2022 CSE 444 – Optimistic CC 24

When T requests rT(X), need to check TS(U) ≤ TS(T)

How do we check
if Read too late ?

Write too
late ?

Read Too Late?

§T wants to read X

CSE 444 – Optimistic CC 25

START(T) … START(U) … wU(X) . . . rT(X)

May 4, 2022

Read Too Late?

§T wants to read X

CSE 444 – Optimistic CC 26

START(T) … START(U) … wU(X) . . . rT(X)

If WT(X) > TS(T) then need to rollback T !
T tried to read too late

May 4, 2022

May 4, 2022 CSE 444 – Optimistic CC 27

Simplified TS-based Schedule (no Aborts)

Request is rT(X)
??

May 4, 2022 CSE 444 – Optimistic CC 28

Simplified TS-based Schedule (no Aborts)

Request is rT(X)
If WT(X) > TS(T) then ROLLBACK

Else READ and update RT(X) to larger of TS(T) or RT(X)

Write Too Late?

§T wants to write X

CSE 444 – Optimistic CC 29

START(T) … START(U) … rU(X) . . . wT(X)

May 4, 2022

Write Too Late?

§T wants to write X

CSE 444 – Optimistic CC 30

START(T) … START(U) … rU(X) . . . wT(X)

If RT(X) > TS(T) then need to rollback T !
T tried to write too late

May 4, 2022

May 4, 2022 CSE 444 – Optimistic CC 31

Simplified TS-based Schedule (no Aborts)

Request is rT(X)
If WT(X) > TS(T) then ROLLBACK

Else READ and update RT(X) to larger of TS(T) or RT(X)

Request is wT(X)
???

May 4, 2022 CSE 444 – Optimistic CC 32

Simplified TS-based Schedule (no Aborts)

Request is rT(X)
If WT(X) > TS(T) then ROLLBACK

Else READ and update RT(X) to larger of TS(T) or RT(X)

Request is wT(X)
If RT(X) > TS(T) then ROLLBACK
what about WT(X)?
Otherwise, WRITE and update WT(X) =TS(T)

Thomas’ Rule

But… we can still handle it in one case:
§T wants to write X

START(T) … START(V) … wV(X) . . . wT(X)

CSE 444 – Optimistic CC 33May 4, 2022

Thomas’ Rule

But we can still handle it:
§T wants to write X

START(T) … START(V) … wV(X) . . . wT(X)

If RT(X) ≤ TS(T) and WT(X) > TS(T)
then don’t write X at all !

CSE 444 – Optimistic CC 34May 4, 2022

Is this
conflict-

serializable?

Thomas’ Rule

But we can still handle it:
§T wants to write X

START(T) … START(V) … wV(X) . . . wT(X)

If RT(X) ≤ TS(T) and WT(X) > TS(T)
then don’t write X at all !

CSE 444 – Optimistic CC 35May 4, 2022

Is this
conflict-

serializable?

View
serializable!

May 4, 2022 CSE 444 – Optimistic CC 36

Simplified TS-based Schedule (no Aborts)

Request is rT(X)
If WT(X) > TS(T) then ROLLBACK

Else READ and update RT(X) to larger of TS(T) or RT(X)

Request is wT(X)
If RT(X) > TS(T) then ROLLBACK

what about WT(X)?
(Thomas Write Rule)

Otherwise, WRITE and update WT(X) =TS(T)

May 4, 2022 CSE 444 – Optimistic CC 37

Simplified TS-based Schedule (no Aborts)

Request is rT(X)
If WT(X) > TS(T) then ROLLBACK

Else READ and update RT(X) to larger of TS(T) or RT(X)

Request is wT(X)
If RT(X) > TS(T) then ROLLBACK

Else if WT(X) > TS(T) ignore write & continue
(Thomas Write Rule)

Otherwise, WRITE and update WT(X) =TS(T)
View-

serializable

Simplified TS-based Schedule (no Aborts)

§ The simplified timestamp-based scheduling with
Thomas’ rule ensures that the schedule is view-
serializable

CSE 444 – Optimistic CC 38May 4, 2022

Ensuring Recoverable Schedules

Recall:
§Schedule without cascading aborts:

when a transaction reads an element, then
transaction that wrote it must have already
committed

§Use the commit bit C(X) to keep track if the
transaction that last wrote X has committed

(just a read will not change the commit bit)

CSE 444 – Optimistic CC 39May 4, 2022

Ensuring Recoverable Schedules

Read dirty data:
§T wants to read X, and WT(X) < TS(T)
§Seems OK, but…

CSE 444 – Optimistic CC 40

START(U) … START(T) … wU(X). . . rT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

May 4, 2022

Ensuring Recoverable Schedules

Thomas’ rule needs to be revised:
§T wants to write X, and WT(X) > TS(T)
§Seems OK not to write at all, but …

CSE 444 – Optimistic CC 41

START(T) … START(U)… wU(X). . . wT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

May 4, 2022

Timestamp-based Scheduling

§When a transaction T requests rT(X) or wT(X),
the scheduler examines RT(X), WT(X), C(X),
and decides one of:

• To grant the request, or
• To rollback T (and restart with later timestamp)
• To delay T until C(X) = true

CSE 444 – Optimistic CC 42May 4, 2022

Timestamp-based Scheduling

RULES including commit bit
§ There are 4 long rules in Sec. 18.8.4
§ You should be able to derive them yourself,

based on the previous slides
§Make sure you understand them !

READING ASSIGNMENT:
Garcia-Molina et al. 18.8.4

CSE 444 – Optimistic CC 43May 4, 2022

Timestamp-based Scheduling (sec. 18.8.4)

CSE 444 – Optimistic CC 44

Transaction wants to READ element X
If WT(X) > TS(T) then ROLLBACK
Else If C(X) = false, then WAIT
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to WRITE element X
If RT(X) > TS(T) then ROLLBACK
Else if WT(X) > TS(T)

Then If C(X) = false then WAIT
else IGNORE write (Thomas Write Rule)

Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false

May 4, 2022

Basic Timestamps with Commit Bit
T1

1
T2

2
T3

3
A
RT=0
WT=0 C=true

T4

4

CSE 444 – Optimistic CC 45

Time

May 4, 2022

Basic Timestamps with Commit Bit
T1

1
T2

2

W2(A)

T3

3
A
RT=0
WT=0 C=true

T4

4

CSE 444 – Optimistic CC 46

Time

May 4, 2022

Basic Timestamps with Commit Bit
T1

1
T2

2

W2(A)

T3

3
A
RT=0
WT=0 C=true
WT=2 C=false
RT=0

T4

4

CSE 444 – Optimistic CC 47

Time

May 4, 2022

Basic Timestamps with Commit Bit
T1

1

R1(A)

T2

2

W2(A)

T3

3
A
RT=0
WT=0 C=true
WT=2 C=false
RT=0

T4

4

CSE 444 – Optimistic CC 48

Time

May 4, 2022

Basic Timestamps with Commit Bit
T1

1

R1(A)
Abort

T2

2

W2(A)

T3

3
A
RT=0
WT=0 C=true
WT=2 C=false
RT=0

T4

4

CSE 444 – Optimistic CC 49

Time

May 4, 2022

Basic Timestamps with Commit Bit
T1

1

R1(A)
Abort

T2

2

W2(A)

T3

3

R3(A)

A
RT=0
WT=0 C=true
WT=2 C=false
RT=0

T4

4

CSE 444 – Optimistic CC 50

Time

May 4, 2022

Basic Timestamps with Commit Bit
T1

1

R1(A)
Abort

T2

2

W2(A)

T3

3

R3(A)
Delay

A
RT=0
WT=0 C=true
WT=2 C=false
RT=0

T4

4

CSE 444 – Optimistic CC 51

Time

May 4, 2022

Basic Timestamps with Commit Bit
T1

1

R1(A)
Abort

T2

2

W2(A)

C

T3

3

R3(A)
Delay

A
RT=0
WT=0 C=true
WT=2 C=false
RT=0

T4

4

CSE 444 – Optimistic CC 52

Time

May 4, 2022

Basic Timestamps with Commit Bit
T1

1

R1(A)
Abort

T2

2

W2(A)

C

T3

3

R3(A)
Delay

A
RT=0
WT=0 C=true
WT=2 C=false
RT=0

C=true

T4

4

CSE 444 – Optimistic CC 53

Time

May 4, 2022

Basic Timestamps with Commit Bit
T1

1

R1(A)
Abort

T2

2

W2(A)

C

T3

3

R3(A)
Delay

R3(A)

A
RT=0
WT=0 C=true
WT=2 C=false
RT=0

C=true

T4

4

CSE 444 – Optimistic CC 54

Time

May 4, 2022

Basic Timestamps with Commit Bit
T1

1

R1(A)
Abort

T2

2

W2(A)

C

T3

3

R3(A)
Delay

R3(A)

A
RT=0
WT=0 C=true
WT=2 C=false
RT=0

C=true
RT=3

T4

4

CSE 444 – Optimistic CC 55

Time

May 4, 2022

Basic Timestamps with Commit Bit
T1

1

R1(A)
Abort

T2

2

W2(A)

C

T3

3

R3(A)
Delay

R3(A)

A
RT=0
WT=0 C=true
WT=2 C=false
RT=0

C=true
RT=3

T4

4

W4(A)

CSE 444 – Optimistic CC 56

Time

May 4, 2022

Basic Timestamps with Commit Bit
T1

1

R1(A)
Abort

T2

2

W2(A)

C

T3

3

R3(A)
Delay

R3(A)

A
RT=0
WT=0 C=true
WT=2 C=false
RT=0

C=true
RT=3
WT=4 C=false

T4

4

W4(A)

CSE 444 – Optimistic CC 57

Time

May 4, 2022

Basic Timestamps with Commit Bit
T1

1

R1(A)
Abort

T2

2

W2(A)

C

T3

3

R3(A)
Delay

R3(A)

W3(A)

A
RT=0
WT=0 C=true
WT=2 C=false
RT=0

C=true
RT=3
WT=4 C=false

T4

4

W4(A)

CSE 444 – Optimistic CC 58

Time

May 4, 2022

Basic Timestamps with Commit Bit
T1

1

R1(A)
Abort

T2

2

W2(A)

C

T3

3

R3(A)
Delay

R3(A)

W3(A)
delay

A
RT=0
WT=0 C=true
WT=2 C=false
RT=0

C=true
RT=3
WT=4 C=false

T4

4

W4(A)

CSE 444 – Optimistic CC 59

Time

May 4, 2022

Basic Timestamps with Commit Bit
T1

1

R1(A)
Abort

T2

2

W2(A)

C

T3

3

R3(A)
Delay

R3(A)

W3(A)
delay

A
RT=0
WT=0 C=true
WT=2 C=false
RT=0

C=true
RT=3
WT=4 C=false

T4

4

W4(A)

abort

CSE 444 – Optimistic CC 60

Time

May 4, 2022

Basic Timestamps with Commit Bit
T1

1

R1(A)
Abort

T2

2

W2(A)

C

T3

3

R3(A)
Delay

R3(A)

W3(A)
delay

A
RT=0
WT=0 C=true
WT=2 C=false
RT=0

C=true
RT=3
WT=4 C=false

WT=2 C=true

T4

4

W4(A)

abort

CSE 444 – Optimistic CC 61

Time

May 4, 2022

Basic Timestamps with Commit Bit
T1

1

R1(A)
Abort

T2

2

W2(A)

C

T3

3

R3(A)
Delay

R3(A)

W3(A)
delay

W3(A)

A
RT=0
WT=0 C=true
WT=2 C=false
RT=0

C=true
RT=3
WT=4 C=false

WT=2 C=true

T4

4

W4(A)

abort

CSE 444 – Optimistic CC 62

Time

May 4, 2022

Basic Timestamps with Commit Bit
T1

1

R1(A)
Abort

T2

2

W2(A)

C

T3

3

R3(A)
Delay

R3(A)

W3(A)
delay

W3(A)

A
RT=0
WT=0 C=true
WT=2 C=false
RT=0

C=true
RT=3
WT=4 C=false

WT=2 C=true
WT=3 C=false

T4

4

W4(A)

abort

CSE 444 – Optimistic CC 63

Time

May 4, 2022

Summary of Timestamp-based Scheduling

§View-serializable

§Avoids cascading aborts (hence: recoverable)

§Does NOT handle phantoms
• These need to be handled separately, e.g. predicate

locks

CSE 444 – Optimistic CC 64May 4, 2022

Multiversion Timestamp

§When transaction T requests r(X)
but WT(X) > TS(T), then T must rollback

§ Idea: keep multiple versions of X:
Xt, Xt-1, Xt-2, . . .

CSE 444 – Optimistic CC 65

TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . .

May 4, 2022

Example (in class)

CSE 444 – Optimistic CC 66

X3 X9 X12 X18

R6(X) -- what happens?
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6

May 4, 2022

Example (in class)

CSE 444 – Optimistic CC 67

X3 X9 X12 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6

May 4, 2022

Example (in class)

CSE 444 – Optimistic CC 68

X3 X9 X12 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6

May 4, 2022

Example (in class)

CSE 444 – Optimistic CC 69

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6

May 4, 2022

Example (in class)

CSE 444 – Optimistic CC 70

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens?
W5(X) – what happens?

When can we delete X3?

TS(T)=6

May 4, 2022

Example (in class)

CSE 444 – Optimistic CC 71

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens? Return X14
W5(X) – what happens?

When can we delete X3?

TS(T)=6

May 4, 2022

Example (in class)

CSE 444 – Optimistic CC 72

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens? Return X14
W5(X) – what happens?

When can we delete X3?

TS(T)=6

May 4, 2022

Example (in class)

CSE 444 – Optimistic CC 73

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens? Return X14
W5(X) – what happens? ABORT

When can we delete X3?

TS(T)=6

May 4, 2022

Example (in class)

CSE 444 – Optimistic CC 74

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens? Return X14
W5(X) – what happens? ABORT

When can we delete X3?

TS(T)=6

May 4, 2022

Example (in class)

CSE 444 – Optimistic CC 75

X3 X9 X12 X14 X18

R6(X) -- what happens? Return X3
W14(X) – what happens?
R15(X) – what happens? Return X14
W5(X) – what happens? ABORT

When can we delete X3? When min TS(T)> 9

TS(T)=6

May 4, 2022

Details

§ When wT(X) occurs,
if the write is legal then

create a new version, denoted Xt where t = TS(T)

§ When rT(X) occurs,
find most recent version Xt such that t <= TS(T)
Notes:

• WT(Xt) = t and it never changes for that version
• RT(Xt) must still be maintained to check legality of writes

§ Can delete Xt if we have a later version Xt1 and all active
transactions T have TS(T) > t1

76CSE 444 – Optimistic CCMay 4, 2022

Details

§ When wT(X) occurs,
if the write is legal then

create a new version, denoted Xt where t = TS(T)

§ When rT(X) occurs,
find most recent version Xt such that t <= TS(T)
Notes:

• WT(Xt) = t and it never changes for that version
• RT(Xt) must still be maintained to check legality of writes

§ Can delete Xt if we have a later version Xt1 and all active
transactions T have TS(T) > t1

77CSE 444 – Optimistic CCMay 4, 2022

Details

§ When wT(X) occurs,
if the write is legal then

create a new version, denoted Xt where t = TS(T)

§ When rT(X) occurs,
find most recent version Xt such that t <= TS(T)
Notes:

• WT(Xt) = t and it never changes for that version
• RT(Xt) must still be maintained to check legality of writes

keep only the largest value

§ Can delete Xt if we have a later version Xt1 and all active
transactions T have TS(T) > t1

78CSE 444 – Optimistic CCMay 4, 2022

Example w/ Basic Timestamps

T1

1

R1(A)
W1(A)

T3

3

R3(A)
W3(A)

T2

2

R2(A)
Abort

A
RT=0
WT=0
RT=1
WT=1
RT=3
WT=3

RT=4

T4

4

R4(A)

CSE 444 – Optimistic CC 79

Timestamps:

May 4, 2022

Example w/ Multiversion

T1

1

R1(A)

T3

3
T2

2
A0

RT=1

T4

4

CSE 444 – Optimistic CC 80May 4, 2022

Example w/ Multiversion

T1

1

R1(A)
W1(A)

T3

3
T2

2
A0

RT=1

T4

4

CSE 444 – Optimistic CC 81May 4, 2022

Example w/ Multiversion

T1

1

R1(A)
W1(A)

T3

3
T2

2
A0

RT=1

T4

4
A1

Create

CSE 444 – Optimistic CC 82May 4, 2022

Example w/ Multiversion

T1

1

R1(A)
W1(A)

T3

3

R3(A)

T2

2
A0

RT=1

T4

4
A1

Create

CSE 444 – Optimistic CC 83May 4, 2022

Example w/ Multiversion

T1

1

R1(A)
W1(A)

T3

3

R3(A)

T2

2
A0

RT=1

T4

4
A1

Create
RT=3

CSE 444 – Optimistic CC 84May 4, 2022

Example w/ Multiversion

T1

1

R1(A)
W1(A)

T3

3

R3(A)
W3(A)

T2

2
A0

RT=1

T4

4
A1

Create
RT=3

CSE 444 – Optimistic CC 85May 4, 2022

Example w/ Multiversion

T1

1

R1(A)
W1(A)

T3

3

R3(A)
W3(A)

T2

2
A0

RT=1

T4

4
A1

Create
RT=3

A3

Create

CSE 444 – Optimistic CC 86May 4, 2022

Example w/ Multiversion

T1

1

R1(A)
W1(A)

T3

3

R3(A)
W3(A)

T2

2

R2(A)

A0

RT=1

T4

4
A1

Create
RT=3

A3

Create

CSE 444 – Optimistic CC 87May 4, 2022

Example w/ Multiversion

T1

1

R1(A)
W1(A)

T3

3

R3(A)
W3(A)

T2

2

R2(A)

A0

RT=1

T4

4
A1

Create
RT=3

RT=2

A3

Create

CSE 444 – Optimistic CC 88May 4, 2022

Example w/ Multiversion

T1

1

R1(A)
W1(A)

T3

3

R3(A)
W3(A)

T2

2

R2(A)

A0

RT=1

T4

4
A1

Create
RT=3

RT=2

A3

Create

CSE 444 – Optimistic CC 89May 4, 2022

Keep only
max RT

Example w/ Multiversion

T1

1

R1(A)
W1(A)

T3

3

R3(A)
W3(A)

T2

2

R2(A)
W2(A)

A0

RT=1

T4

4
A1

Create
RT=3

RT=2

A3

Create

CSE 444 – Optimistic CC 90May 4, 2022

Example w/ Multiversion

T1

1

R1(A)
W1(A)

T3

3

R3(A)
W3(A)

T2

2

R2(A)
W2(A)
abort

A0

RT=1

T4

4
A1

Create
RT=3

RT=2

A3

Create

CSE 444 – Optimistic CC 91May 4, 2022

Example w/ Multiversion

T1

1

R1(A)
W1(A)

T3

3

R3(A)
W3(A)

T2

2

R2(A)
W2(A)
abort

A0

RT=1

T4

4

R4(A)

A1

Create
RT=3

RT=2

A3

Create

CSE 444 – Optimistic CC 92May 4, 2022

Example w/ Multiversion

T1

1

R1(A)
W1(A)

T3

3

R3(A)
W3(A)

T2

2

R2(A)
W2(A)
abort

A0

RT=1

T4

4

R4(A)

A1

Create
RT=3

RT=2

A3

Create

RT=4

CSE 444 – Optimistic CC 93May 4, 2022

T5

5

R5(A)
W5(A)

Second Example w/ Multiversion
T1

1

W1(A)

R1(A)
C

T2

2

R2(A)

W2(A)
abort

T3

3

R3(A)

C

A0

X

T4

4
W4(A)

R4(A)

A1

Create
RT=2
RT=3

RT=3

X

A2

CSE 444 – Optimistic CC 94

A3 A4

Create

RT=5

RT=5

A5

Create

May 4, 2022

X means that we can delete this version

T1

1

W1(A)

R1(A)
C

T2

2

R2(A)

W2(A)
abort

T3

3

R3(A)

C

A0

X

T4

4
W4(A)

R4(A)

A1

Create
RT=2
RT=3

RT=3

X

A2

CSE 444 – Optimistic CC 95

A3 A4

Create

RT=5

RT=5

A5

Create

T5

5

R5(A)
W5(A)

May 4, 2022

Second Example w/ Multiversion

Multiversion Concurrency Control

§View serializable

§Avoids cascading aborts

§Handles phantoms correctly

May 4, 2022 CSE 444 – Optimistic CC 96

Outline

§Concurrency control by timestamps (18.8)
§Concurrency control by validation (18.9)
§ Snapshot Isolation

CSE 444 – Optimistic CC 97May 4, 2022

Concurrency Control by Validation

§ Each transaction T defines:
• Read set RS(T) = the elements it reads
• Write set WS(T) = the elements it writes

§ Each transaction T has three phases:
• Read phase; time = START(T)
• Validate phase (may need to rollback); time = VAL(T)
• Write phase; time = FIN(T)

Main invariant: the serialization order is VAL(T)

CSE 444 – Optimistic CC 98May 4, 2022

Avoid rT(X) - wU(X) Conflicts

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate ?

START(T)

IF RS(T) ∩ WS(U) and FIN(U) > START(T)
(U has validated and U has not finished before T begun)

Then ROLLBACK(T)

conflicts

VAL(T)

CSE 444 – Optimistic CC 99May 4, 2022

Avoid wT(X) - wU(X) Conflicts

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate Write phase ?

START(T) VAL(T)

IF WS(T) ∩ WS(U) and FIN(U) > VAL(T)
(U has validated and U has not finished before T validates)

Then ROLLBACK(T)

conflicts

CSE 444 – Optimistic CC 100May 4, 2022

Outline

§Concurrency control by timestamps (18.8)
§Concurrency control by validation (18.9)
§ Snapshot Isolation

• Not in the book, but good(?) overview in Wikipedia

CSE 444 – Optimistic CC 101May 4, 2022

Snapshot Isolation

§ A type of multiversion concurrency control algorithm
§ Combines techniques we learned:

• Timestamps
• Multiversion
• Validation

§ Very popular: Oracle, PostgreSQL, SQL Server 2005

§ Prevents many classical anomalies BUT…
…not serializable (!)

§ “Serializable snapshot isolation” now in PostgreSQL

102CSE 444 – Optimistic CCMay 4, 2022

Snapshot Isolation Overview

§ Each transactions receives a timestamp TS(T)

§ Transaction T sees snapshot at time TS(T) of the database

§ W/W conflicts resolved by “first committer wins” rule
• Loser gets aborted

§ R/W conflicts are ignored

CSE 444 – Optimistic CC 103May 4, 2022

Snapshot Isolation Details

§Multiversion concurrency control:
• Versions of X: Xt1, Xt2, Xt3, . . .

§When T reads X, return XTS(T).
§When T writes X (to avoid lost update):

• If latest version of X is TS(T) then proceed
• Else if C(X) = true then abort
• Else if C(X) = false then wait

• When T commits, write its updates to disk

CSE 444 – Optimistic CC 104May 4, 2022

What Works and What Not

§Reads are ever delayed!

§No dirty reads (Why ?)
• Start each snapshot with consistent state

§No inconsistent reads (Why ?)
• Two reads by the same transaction will read same

snapshot
§No lost updates (“first committer wins”)

§However: read-write conflicts not caught!
• A txn can read and commit even though the value had

changed in the middle

CSE 444 – Optimistic CC 105May 4, 2022

Write Skew

106

T1:
READ(X);
if X >= 50

then Y = -50; WRITE(Y)
COMMIT

T2:
READ(Y);
if Y >= 50

then X = -50; WRITE(X)
COMMIT

In our notation:

R1(X), R2(Y), W1(Y), W2(X), C1,C2

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !!!

CSE 444 – Optimistic CCMay 4, 2022

Write Skews Can Be Serious

§Acidicland had two viceroys, Delta and Rho
§ Budget had two registers: taXes, and spendYng
§ They had high taxes and low spending…

107

Delta:
READ(taXes);
if taXes = ‘High’

then { spendYng = ‘Raise’;
WRITE(spendYng) }

COMMIT

Rho:
READ(spendYng);
if spendYng = ‘Low’

then {taXes = ‘Cut’;
WRITE(taXes) }

COMMIT

… and they ran a deficit ever since.
May 4, 2022 CSE 444 – Optimistic CC

Discussion: Tradeoffs

§ Pessimistic CC: Locks
• Great when there are many conflicts
• Poor when there are few conflicts

§ Optimistic CC: Timestamps, Validation, SI
• Poor when there are many conflicts (rollbacks)
• Great when there are few conflicts

§ Compromise
• READ ONLY transactions ® timestamps
• READ/WRITE transactions ® locks

CSE 444 – Optimistic CC 108May 4, 2022

109

Commercial Systems

Always check documentation!
§DB2: Strict 2PL
§ SQL Server:

• Strict 2PL for standard 4 levels of isolation
• Multiversion concurrency control for snapshot

isolation
§ PostgreSQL: SI; recently: seralizable SI (!)
§Oracle: SI

CSE 444 – Optimistic CC
May 4, 2022

