

Database System Internals

Operator Algorithms (part 2)

Paul G. Allen School of Computer Science and Engineering University of Washington, Seattle

Today's Outline

Query Execution Algorithms:

- Catch-up from last lecture
- Finish operator implementation

Operator Algorithms

Design criteria

- Cost: IO, CPU, Network
- Memory utilization
- Load balance (for parallel operators)

Cost Parameters

- Cost = total number of I/Os
- This is a simplification that ignores CPU, network
- Parameters:
- $B(R)=\#$ of blocks (i.e., pages) for relation R
- $T(R)=\#$ of tuples in relation R
- $\mathbf{V}(\mathbf{R}, \mathbf{a})=$ \# of distinct values of attribute \mathbf{a}
- When a is a key, $V(R, a)=T(R)$
- When a is not a key, $V(R, a)$ can be anything $<T(R)$

Convention

- Cost = the cost of reading operands from disk, plus cost to read/write intermediate results
- Cost of writing the final result to disk is not included; need to count it separately when applicable

Outline

- Join operator algorithms
- One-pass algorithms (Sec. 15.2 and 15.3)
- Index-based algorithms (Sec 15.6)
- Two-pass algorithms (Sec 15.4 and 15.5)
- Note about readings:
- In class, we discuss only algorithms for joins
- Other operators are easier: book has extra details

Join Algorithms

- Hash join
- Nested loop join
- Sort-merge join

Hash Join

Hash join: $\mathrm{R} \bowtie \mathrm{S}$

- Scan R, build buckets in main memory
- Then scan S and join
- Cost: $B(R)+B(S)$
- One-pass algorithm when $B(R) \leq M$

Note: the inner relation is the relation on which we build the hash table

- Usually this is the right relation of $R \bowtie S$, i.e. S.
- But the following slides choose the left relation, i.e. R

Hash Join Example

Patient(pid, name, address)
Insurance(pid, provider, policy_nb)
Patient \bowtie Insurance

Two tuples per page

Patient

1	'Bob'	'Seattle'
2	'Ela'	'Everett'

3	'Jill'	'Kent'
4	'Joe'	'Seattle'

Insurance

2	'Blue'	123
4	'Prem'	432

4	'Prem'	343
1	'GrpH'	554

Hash Join Example

Patient \bowtie Insurance

Some largeenough nb

Memory M = 21 pages

Hash Join Example

Step 1: Scan Patient and build hash table in memory Can be done in method open()

Memory M = 21 pages
Hash h: pid \% 5

5		1	6	2		3	8	4	9

Disk
Patient Insurance

1	2	2	4	6	6
3	4	4	3	1	3
9	6	2	8		
8	5	8	9		

Hash Join Example

Step 2: Scan Insurance and probe into hash table

Done during calls to next()

Memory M = 21 pages
Hash h: pid \% 5

5		1	6	2		3	8	4	9

Disk
Patient Insurance

1	2
3	4

9	6

2	4

2	8

8	5

$8 \quad 9$

1	3

4	3

April 13, 2022

Hash Join Example

Step 2: Scan Insurance and probe into hash table Done during calls to next()

Memory M = 21 pages
Hash h: pid \% 5

5		1	6	2		3	8	4	9

Disk
Patient Insurance

2	4

Input buffer

Output buffer

Hash Join Example

Step 2: Scan Insurance and probe into hash table Done during calls to next()

Memory M = 21 pages
Hash h: pid \% 5

5		1	6	2		3	8	4	9

Disk
Patient Insurance

1	2	2	4	6	6
3	4	4	3	1	3
9	6	2	8		
8	5	8	9		

Input buffer
Keep going until read all of Insurance

Cost: $B(R)+B(S)$

Discussion

- Hash-join is the workhorse of database systems
- The hash table is built on the heap, not in BP; hence it is not organized in pages, but pages are still convenient to measure its size
- Hash-join works great when:
- The inner table fits in main memory
- The hash function is good (never write your own!)
- The data has no skew (discuss in class...)

Nested Loop Joins

- Tuple-based nested loop $R \bowtie S$
$-R$ is the outer relation, S is the inner relation

```
for each tuple t in R do
    for each tuple t in in do
    if }\mp@subsup{t}{1}{}\mathrm{ and t2 join then output ( }\mp@subsup{t}{1}{},\mp@subsup{t}{2}{}
```

What is the Cost?

Nested Loop Joins

- Tuple-based nested loop $R \bowtie S$
- R is the outer relation, S is the inner relation

```
for each tuple t in R do
    for each tuple t in in do
    if }\mp@subsup{t}{1}{}\mathrm{ and t}\mp@subsup{t}{2}{}\mathrm{ join then output ( }\mp@subsup{t}{1}{},\mp@subsup{t}{2}{}
```

- Cost: $B(R)+T(R) B(S)$

What is the Cost?

- Multiple-pass since S is read many times

Page-at-a-time Refinement

for each page of tuples r in R do for each page of tuples s in S do for all pairs of tuples t_{1} in $\mathrm{r}, \mathrm{t}_{2}$ in s if t_{1} and t_{2} join then output $\left(t_{1}, t_{2}\right)$

What is the Cost?

Page-at-a-time Refinement

for each page of tuples r in R do for each page of tuples s in S do for all pairs of tuples t_{1} in $\mathrm{r}, \mathrm{t}_{2}$ in s if t_{1} and t_{2} join then output $\left(t_{1}, t_{2}\right)$

- Cost: $B(R)+B(R) B(S)$

What is the Cost?

Page-at-a-time Refinement

Page-at-a-time Refinement

Page-at-a-time Refinement

Input buffer for Patient
\square Input buffer for Insurance

Keep going until read all of Insurance

Then repeat for next page of Patient... until end of Patient

Cost: $B(R)+B(R) B(S)$

Block-Memory Refinement

for each group of $\mathrm{M}-1$ pages r in R do for each page of tuples s in S do for all pairs of tuples t_{1} in r, t_{2} in s if t_{1} and t_{2} join then output $\left(t_{1}, t_{2}\right)$

What is the Cost?

Block Memory Refinement

$$
M=3
$$

Disk
Patient Insurance

1	2
3	4
9	6
8	5

Input buffer for Patient

Input buffer for Insurance

Block Memory Refinement

$$
M=3
$$

Disk
Patient Insurance

8	9

Input buffer for Patient

Input buffer for Insurance

Block Memory Refinement

$$
M=3
$$

Disk
Patient Insurance

1	2	Input buffer for Patient

\square

Input buffer for Insurance

Block Memory Refinement

$$
M=3
$$

Disk
Patient Insurance

1	2
3	4

9	6
8	5

2	4
6 6 4 3 1 3 2 8 8 9	

1	2	Input buffer for Patient

\square

Input buffer for Insurance

Block Memory Refinement

$$
M=3
$$

Disk
Patient Insurance

1	2
3	4

9	6
8	5

2	4		6
	6		
4	3		1
	3		

2	8

$8 \quad 9$

1	2	Input buffer for Patient

\square

2	4	Input buffer for Insurance

Block Memory Refinement

$$
M=3
$$

Disk
Patient Insurance

1	2
3	4

9	6
8	5

2	4	6	6
4	3	1	3
2	8		
8	9		

1	2	Input buffer for Patient

\square

\square | 4 | 3 | Input buffer for Insurance |
| :--- | :--- | :--- |

No output buffer: stream to output

Block Memory Refinement

$$
M=3
$$

Disk
Patient Insurance

9	6
8	5

1	2	Input buffer for Patient

\square
$3 \quad 4$

2	8	Input buffer for Insurance

No output buffer: stream to output

Block Memory Refinement

$$
M=3
$$

Disk
Patient Insurance

1	2
3	4
9	6
8	5

2	4	6	6
4	3	1	3
2	8		
8	9		

Input buffer for Patient

Input buffer for Insurance

Block Memory Refinement

$$
M=3
$$

Disk
Patient Insurance

1	2
3	4
9	6
8	5

2	4	6	6
4	3	1	3
2	8		
8	9		

Block Memory Refinement

$$
M=3
$$

Disk
Patient Insurance

1	2
3	4
9	6
8	5

| 2 | 4 | 6 6
 4 3
 1 1 3
 2 8
 8 9 |
| :--- | :--- | :--- | :--- |

9	6	Input buffer for Patient

\square5

2	4	Input buffer for Insurance

Block Memory Refinement

for each group of $\mathrm{M}-1$ pages r in R do for each page of tuples s in S do for all pairs of tuples t_{1} in r, t_{2} in s if t_{1} and t_{2} join then output $\left(t_{1}, t_{2}\right)$

What is the Cost

Block Memory Refinement

for each group of $\mathrm{M}-1$ pages r in R do for each page of tuples s in $S \underline{d o}$ for all pairs of tuples t_{1} in r, t_{2} in s if t_{1} and t_{2} join then output $\left(t_{1}, t_{2}\right)$

- Cost: $B(R)+B(R) B(S) /(M-1)$

Discussion

$R \bowtie S: \quad R=o u t e r$ table, $S=$ inner table

- Tuple-based nested loop join is never used
- Page-at-a-time nested loop join:
- Usually combined with index access to inner table
- Efficient when the outer table is small
- Block memory refinement nested loop:
- Usually builds a hash table on the outer table
- Efficient when the outer table is small

Sort-Merge Join

Sort-merge join: $R \bowtie S$

- Scan R and sort in main memory
- Scan S and sort in main memory
- Merge R and S

Sort-Merge Join

Sort-merge join: $R \bowtie S$

- Scan R and sort in main memory
- Scan S and sort in main memory
- Merge R and S
- Cost: $B(R)+B(S)$
- One pass algorithm when $B(S)+B(R)<=M$
- Typically, this is NOT a one pass algorithm,
- We'll see the multi-pass version next lecture

Sort-Merge Join Example

Step 1: Scan Patient and sort in memory
Memory M = 21 pages

Disk

Patient Insurance

2	4
4	3
2	8
8	9

Sort-Merge Join Example

Step 2: Scan Insurance and sort in memory
Memory M = 21 pages

1	2	3	4	5	6	8	9
1	2	2	3	3	4	4	6

Sort-Merge Join Example

Step 3: Merge Patient and Insurance
Memory M = 21 pages

Output buffer

Sort-Merge Join Example

Step 3: Merge Patient and Insurance
Memory M = 21 pages

| 1 2 3 4 5 6 8 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 2 2 3 3 4 4 | | |
| 6 8 8 9 | | |

Sort-Merge Join Example

Step 3: Merge Patient and Insurance

Memory M = 21 pages

Output buffer

Sort-Merge Join Example

Step 3: Merge Patient and Insurance

Memory M = 21 pages

Sort-Merge Join Example

Step 3: Merge Patient and Insurance

Memory M = 21 pages

Sort-Merge Join Example

Step 3: Merge Patient and Insurance

Memory M = 21 pages

Sort-Merge Join Example

Step 3: Merge Patient and Insurance

Memory M = 21 pages

| 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$| 1 | 2 | 2 | 3 | 3 | 4 | 4 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 8 | 8 | 9 | | | | |
| | | | | | | | |

Outline

- Join operator algorithms
- One-pass algorithms (Sec. 15.2 and 15.3)
- Index-based algorithms (Sec 15.6)
- Two-pass algorithms (Sec 15.4 and 15.5)

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- $B(R)=$ size of R in blocks
- $T(R)=$ number of tuples in R
- $V(R, a)=$ \# of distinct values of attribute a

Note: we ignore I/O cost for index pages

Index Based Selection

Selection on equality: $\sigma_{\mathrm{a}=\mathrm{v}}(\mathrm{R})$

- $B(R)=$ size of R in blocks
- $T(R)=$ number of tuples in R
- $V(R, a)=$ \# of distinct values of attribute a

What is the cost in each case?

- Clustered index on a:
- Unclustered index on a:

Note: we ignore I/O cost for index pages

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- $B(R)=$ size of R in blocks
- $T(R)=$ number of tuples in R
- $V(R, a)=$ \# of distinct values of attribute a

What is the cost in each case?

- Clustered index on a : $\quad B(R) / V(R, a)$
- Unclustered index on a:

Note: we ignore I/O cost for index pages

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- $B(R)=$ size of R in blocks
- $T(R)=$ number of tuples in R
- $V(R, a)=\#$ of distinct values of attribute a

What is the cost in each case?

- Clustered index on a : $\quad B(R) / V(R, a)$
- Unclustered index on $a: T(R) / V(R, a)$

Note: we ignore I/O cost for index pages

Index Based Selection

- Table scan:
- Index based selection:

Index Based Selection

- Example:	B(R) $)=2000$
$T(R)=100000$	
$V(R, a)=20$	\quad cost of $f_{\sigma_{\text {and }}(R)}=?$
- Table scan: $B(R)=2,0001 / O s$
- Index based selection:

Index Based Selection

- Example:	B(R) $)=2000$
$T(R)=100000$	
$V(R, a)=20$	\quad cost of $f_{\sigma_{\text {and }}(R)}=?$
- Table scan: $B(R)=2,000 \mathrm{I} / \mathrm{Os}$
- Index based selection:
- If index is clustered:
- If index is unclustered:

Index Based Selection

- Example: $\begin{aligned} & \\ & \begin{array}{l}\text { B(R) })=2000 \\ T(R)=10000 \\ V(R, ~ a) ~\end{array}=20\end{aligned}$

$$
\text { cost of } \sigma_{a=v}(\mathrm{R})=\text { ? }
$$

- Table scan: $B(R)=2,000$ I/Os
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=100 \mathrm{l} / \mathrm{Os}$
- If index is unclustered:

Index Based Selection

- Example: | $\begin{array}{l}B(R)=2000 \\ T(R)=100000 \\ V(R, a)=20\end{array}$ |
| :--- |
- Table scan: $B(R)=2,0001 / O s$
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=100 \mathrm{I} / \mathrm{Os}$
- If index is unclustered: $T(R) / V(R, a)=5,000 I / O$ s

Index Based Selection

- Example: $\begin{aligned} & \begin{array}{l}\mathrm{B}(\mathrm{R})=2000 \\ \mathrm{~T}(\mathrm{R})=100,000 \\ \mathrm{~V}(\mathrm{R}, \mathrm{a})=20\end{array} \\ & \text { - Table scan: } \mathrm{B}(\mathrm{R})=2,000 \mathrm{I}=\mathbf{O s}\end{aligned}$
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=100 \mathrm{I} / \mathrm{Os}$
- If index is unclustered: $T(R) / V(R, a)=5,000 \mathrm{I} / \mathrm{Os}$

Index Based Selection

- Example: $\begin{aligned} & \begin{array}{l}\mathrm{B}(\mathrm{R})=2000 \\ \mathrm{~T}(\mathrm{R})=100,000 \\ \mathrm{~V}(\mathrm{R}, \mathrm{a})=20\end{array} \\ & \text { - Table scan: } \mathrm{B}(\mathrm{R})=2,000 \mathrm{I} / \mathrm{Os}\end{aligned}$
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=1001 / O s$
- If index is unclustered: $T(R) / V(R, a)=5,000 \mathrm{I} / \mathrm{Os}$

Lesson: Don't build unclustered indexes when $\mathrm{V}(\mathrm{R}, \mathrm{a})$ is small!

Index Based Selection

- Example: | $\begin{array}{l}B(R)=2000 \\ T(R)=100000 \\ V(R, a)=20\end{array}$ |
| :--- |

$$
\operatorname{cost} \text { of } \sigma_{a=v}(R)=\text { ? }
$$

- Table scan: $B(R)=2,000 \mathrm{I} / \mathrm{Os}$
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=100 \mathrm{I} / \mathrm{O}$
- If index is unclustered: $T(R) / V(R, a)=5,000 I / O s$

Lesson: Don't build unclustered indexes when $\mathrm{V}(\mathrm{R}, \mathrm{a})$ is small!

Index Nested Loop Join

$R \bowtie S$

- Assume S has an index on the join attribute
- Iterate over R, for each tuple fetch corresponding tuple(s) from S
- Previous nested loop join: cost
- $B(R)+T(R) * B(S)$
- Index Nested Loop Join Cost:
- If index on S is clustered: $B(R)+T(R) B(S) / V(S, a)$
- If index on S is unclustered: $B(R)+T(R) T(S) / V(S, a)$

Outline

- Join operator algorithms
- One-pass algorithms (Sec. 15.2 and 15.3)
- Index-based algorithms (Sec 15.6)
- Two-pass algorithms (Sec 15.4 and 15.5)

Two-Pass Algorithms

- Fastest algorithm seen so far is one-pass hash join What if data does not fit in memory?
- Need to process it in multiple passes
- Two key techniques
- Sorting
- Hashing

Basic Terminology

- A run in a sequence is an increasing subsequence
- What are the runs?

$$
2,4,99,103,88,77,3,79,100,2,50
$$

Basic Terminology

- A run in a sequence is an increasing subsequence
- What are the runs?

$$
2,4,99,103,|88,|77,|3,79,100,| 2,50
$$

External Merge-Sort: Step 1

Phase one: load M blocks in memory, sort, send to disk, repeat

External Merge-Sort: Step 1

Phase one: load M blocks in memory, sort, send to disk, repeat
Q: How long are the runs?

External Merge-Sort: Step 1

Phase one: load M blocks in memory, sort, send to disk, repeat
Q: How long are the runs?

A: Length $=\mathrm{M}$ blocks

Phase two: merge M runs into a bigger run

- Merge $\mathrm{M}-1$ runs into a new run
- Result: runs of length $M(M-1) \approx M^{2}$

Example

- Merging three runs to produce a longer run:
$0,14,33,88,92,192,322$
2, 4, 7, 43, 78, 103, 523
1, 6, 9, 12, 33, 52, 88, 320
Output:
0

Example

- Merging three runs to produce a longer run:
$0,14,33,88,92,192,322$
2, 4, 7, 43, 78, 103, 523
1, 6, 9, 12, 33, 52, 88, 320
Output:
0 , ?

Example

- Merging three runs to produce a longer run:
$0,14,33,88,92,192,322$
2, 4, 7, 43, 78, 103, 523
1, 6, 9, 12, 33, 52, 88, 320
Output:
0, 1, ?

Example

- Merging three runs to produce a longer run:
$0,14,33,88,92,192,322$
2, 4, 7, 43, 78, 103, 523
$1,6,9,12,33,52,88,320$
Output:
$0,1,2,4,6,7$, ?

External Merge-Sort: Step 2

Phase two: merge M runs into a bigger run

- Merge $\mathrm{M}-1$ runs into a new run
- Result: runs of length $M(M-1) \approx M^{2}$

If approx. $B<=M^{2}$ then we are done

Cost of External Merge Sort

- Assumption: $B(R)<=M^{2}$
- Read+write+read $=3 B(R)$

Discussion

- What does $B(R)<=M^{2}$ mean?
- How large can R be?

Discussion

- What does $B(R)<=M^{2}$ mean?
- How large can R be?
- Example:
- Page size $=32 \mathrm{~KB}$
- Memory size 32GB: $M=10^{6}$-pages

Discussion

- What does $B(R)<=M^{2}$ mean?
- How large can R be?
- Example:
- Page size $=32 \mathrm{~KB}$
- Memory size 32GB: $M=10^{6}$ pages
- R can be as large as 10^{12} pages
- 32×10^{15} Bytes $=32 \mathrm{~PB}$

Merge-Join

Join $R \bowtie S$

- How?....

Merge-Join

Join $R \bowtie S$

- Step 1a: generate initial runs for R
- Step 1b: generate initial runs for S
- Step 2: merge and join
- Either merge first and then join
- Or merge \& join at the same time

Merge-Join Example

Setup: Want to join R and S

Relation R has 10 pages with 2 tuples per page
Relation S has 8 pages with 2 tuples per page
Values shown are values of join attribute for each given tuple

Merge-Join Example

Step 1: Read M pages of R and sort in memory

Merge-Join Example

Step 1: Read M pages of R and sort in memory, then write to disk

Merge-Join Example

Step 1: Repeat for next M pages until all R is processed

Merge-Join Example

Step 1: Do the same with S

Run 1 of S Run 2 of S

0	1
2	3
3	4
5 7	
8	9

Merge-Join Example

Step 2: Join while merging sorted runs

Merge-Join Example

Step 2: Join while merging sorted runs

Merge-Join Example

Step 2: Join while merging sorted runs

Merge-Join Example

Step 2: Join while merging sorted runs

Merge-Join Example

Step 2: Join while merging sorted runs

Merge-Join Example

Step 2: Join while merging sorted runs

Merge-Join

$M_{1}=B(R) / M$ runs for R
$M_{2}=B(S) / M$ runs for S

Merge-join $M_{1}+M_{2}$ runs;
need $M_{1}+M_{2}<=M$ to process all runs
i.e. $B(R)+B(S)<=M^{2}$

