
Transaction Management in the R*
Distributed Database Management System

C. MOHAN, B. LINDSAY, and R. OBERMARCK
IBM Almaden Research Center

This paper deals with the transaction management aspects of the R* distributed database system. It
concentrates primarily on the description of the R* commit protocols, Presumed Abort (PA) and
Presumed Commit (PC). PA and PC are extensions of the well-known, two-phase (2P) commit
protocol. PA is optimized for read-only transactions and a class of multisite update transactions, and
PC is optimized for other classes of multisite update transactions. The optimizations result in reduced
intersite message traffic and log writes, and, consequently, a better response time. The paper also
discusses R*‘s approach toward distributed deadlock detection and resolution.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems-distributed datahes; D.4.1 [Operating Systems]: Process Management-concurrency;
deadlocks, syndvonization; D.4.7 [Operating Systems]: Organization and Design-distributed sys-
tems; D.4.5 [Operating Systems]: Reliability--fault tolerance; H.2.0 [Database Management]:
General-concurrency control; H.2.2 [Database Management]: ‘Physical Design-recouery and
restart; H.2.4 [Database Management]: Systems-ditributed systems; transactionprocessing; H.2.7
[Database Management]: Database Administration-logging and recouery

General Terms: Algorithms, Design, Reliability

Additional Key Words and Phrases: Commit protocols, deadlock victim selection

1. INTRODUCTION

R* is an experimental, distributed database management system (DDBMS)
developed and operational at the IBM San Jose Research Laboratory (now
renamed the IBM Almaden Research Center) 118, 201. In a distributed database
system, the actions of a transaction (an atomic unit of consistency and recovery
[13]) may occur at more than one site. Our model of a transaction, unlike that
of some other researchers’ [25, 281, permits multiple data manipulation and
definition statements to constitute a single transaction. When a transaction
execution starts, its actions and operands are not constrained. Conditional
execution and ad hoc SQL statements are available to the application program.
The whole transaction need not be fully specified and made known to the system
in advance. A distributed transaction commit protocol is required in order to
ensure either that all the effects of the transaction persist or that none of the

Authors’ address: IBM Almaden Research Center, K55/801,650 Harry Road, San Jose, CA 95120.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1986 ACM 0362-5915/86/1200-0378 $00.75

ACM Transactions on Database Systems, Vol. 11, No. 4, December 1966, Pages 373-396.

Transaction Management in the R’ Distributed Database Management System ’ 379

effects persist, despite intermittent site or communication link failures. In other
words, a commit protocol is needed to guarantee the uniform commitment of
distributed transaction executions.

Guaranteeing uniformity requires that certain facilities exist in the distributed
database system. We assume that each process of a transaction is able to
provisionally perform the actions of the transaction in such a way that they can
be undone if the transaction is or needs to be aborted. Also, each database of the
distributed database system has a log that is used to recoverably record the state
changes of the transaction during the execution of the commit protocol and the
transaction’s changes to the database (the UNDO/REDO log 114, 151). The
log records are carefully written sequentially in a file that is kept in atoMe
(nonvolatile) storage [17].

When a log record is written, the write can be done synchronously or asyn-
chronously. In the former case, called forcing a log record, the forced log record
and all preceding ones are immediately moved from the virtual memory buffers
to stable storage. The transaction writing the log record is not allowed to continue
execution until this operation is completed. This means that, if the site crashes
(assuming that a crash results in the loss of the contents of the virtual memory)
after the force-write has completed, then the forced record and the ones preceding
it will have survived the crash and will be available, from the stable storage,
when the site recovers. It is important to be able to “batch” force-writes for high
performance [111. R* does rudimentary batching of force-writes.

On the other hand, in the asynchronous case, the record gets written to virtual
memory buffer storage and is allowed to migrate to the stable storage later on
(due to a subsequent force or when a log page buffer fills up). The transaction
writing the record is allowed to continue execution before the migration takes
place. This means that, if the site crashes after the log write, then the record
may not be available for reading when the site recovers. An important point to
note is that a synchronous write increases the response time of the transaction
compared to an asynchronous write. Hereafter, we refer to the latter as simply a
write and the former as a force-write.

Several commit protocols have been proposed in the literature, and some have
been implemented [8, 16, 17, 19, 23, 26, 271. These are variations of what has
come to be known as the two-phase (2P) commit protocol. These protocols differ
in the number of messages sent, the time for completion of the commit processing,
the level of parallelism permitted during the commit processing, the number of
state transitions that the protocols go through, the time required for recovery
once a site becomes operational after a failure, the number of log records written,
and the number of those log records that are force-written to stable storage. In
general, these numbers are expressed as a function of the number of sites or
processes involved in the execution of the distributed transaction.

Some of the desirable characteristics in a commit protocol are (1) guaranteed
transaction atomicity always, (2) ability to “forget” outcome of commit processing
after a short amount of time, (3) minimal overhead in terms of log writes and
message traffic, (4) optimized performance in the no-failure case, (5) exploitation
of completely or partially read-only transactions, and (6) maximizing the ability
to perform unilateral aborts.

ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986.

380 l C. Mohan et al.

This paper concentrates on the performance aspects of commit protocols,
especially the logging and communication performance during no-failure situa-
tions. We have been careful in describing when and what type of log records are
written. The discussions of commit protocols in the literature are very vague, if
there is any mention at all, about this crucial (for correctness and performance)
aspect of the protocols. We also exploit the read-only property of the complete
transaction or some of its processes, In such instances, one can benefit from the
fact that for such processes of the transaction it does not matter whether the
transaction commits or aborts, and hence they can be excluded from the second
phase of the commit protocol. This also means that the (read) locks acquired by
such processes can be released during the first phase. No a priori assumptions
are made about the read-only nature of transactions. Such information is discov-
ered only during the first phase of the commit protocol.

Here, we suggest that complicated protocols developed for dealing with rare
kinds of failures during commit coordination are not worth the costs that they
impose on the processing of distributed transactions during normal times (i.e.,
when no failures occur). Multilevel hierarchical commit protocols are also sug-
gested to be more natural than the conventional two-level (one coordinator and
a set of subordinates) protocols. This stems from the fact that the distributed
query processing algorithms are efficiently implemented as a tree of cooperating
processes.

With these goals in mind, we extended the conventional 2P commit protocol
to support a tree of processes [18] and defined the Presumed Abort (PA) and the
Presumed Commit (PC) protocols to improve the performance of distributed
transaction commit.

R*, which is an evolution of the centralized DBMS System R [5], like its
predecessor, supports transaction serializability and uses the two-phase locking
(2PL) protocol [lo] as the concurrency control mechanism. The use of 2PL
introduces the possibility of deadlocks. R*, instead of preventing deadlocks,
allows them (even distributed ones) to occur and then resolves them by deadlock
detection and victim transaction abort.

Some of the desirable characteristics in a distributed deadlock detection
protocol are (1) all deadlocks are resolved in spite of site and link failures,
(2) each deadlock is detected only once, (3) overhead in terms of messages
exchanged is small, and (4) once a distributed deadlock is detected the time taken
to resolve it (by choosing a victim and aborting it) is small.

The general features of the global deadlock detection algorithm used in R* are
described in [24]. Here we concentrate on the specific implementation of that
distributed algorithm in R* and the solution adopted for the global deadlock
victim selection problem. In general, as far as global deadlock management is
concerned, we suggest that if distributed detection of global deadlocks is to be
performed then, in the event of a global deadlock, it makes sense to choose as
the victim a transaction that is local to the site of detection of that deadlock (in
preference to, say, the “youngest” transaction which may be a nonlocal trans-
action), assuming that such a local transaction exists.

The rest of this paper is organized as follows. First, we give a careful presen-
tation of 2P. Next, we derive from 2P in a stepwise fashion the two new protocols,
namely, PA and PC. We then present performance comparisons, optimizations,
ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986.

Transaction Management in the R* Distributed Database Management System l 381

and extensions of PA and PC. Next, we present the R* approach to global
deadlock detection and resolution. We then conclude by outlining the current
status of R*.

2. THE TWO-PHASE COMMIT PROTOCOL

In 2P, the model of a distributed transaction execution is such that there is one
process, called the coordinator, that is connected to the user application and a
set of other processes, called the subordinates. During the execution of the commit
protocol the subordinates communicate only with the coordinator, not among
themselves. Transactions are assumed to have globally unique names. The
processes are assumed to have globally unique names (which also indicate the
locations of the corresponding processes; the processes do not migrate from site
to site).’ All the processes together accomplish the actions of a distributed
transaction.

2.1 2P Under Normal Operation

First, we describe the protocol without considering failures. When the user decides
to commit a transaction, the coordinator, which receives a commit-transaction
command from the user, initiates the first phase of the commit protocol by
sending PREPARE messages, in parallel, to the subordinates to determine
whether they are willing to commit the transaction.2 Each subordinate that is
willing to let the transaction be committed first force-writes a prepare log record
and then sends a YES VOTE to the coordinator and waits for the final decision
(commit/abort) from the coordinator. The process is then said to be in the
prepared state, and it cannot unilaterally commit or abort the transaction. Each
subordinate that wants to have the transaction aborted force-writes an abort
record and sends a NO VOTE to the coordinator. Since a NO VOTE acts like a
veto, the subordinate knows that the transaction will definitely be aborted by
the coordinator. Hence the subordinate does not need to wait for a coordinator
response before aborting the local effects of the transaction. Therefore, the
subordinate aborts the transaction, releases its locks, and “forgets” it (i.e., no
information about this transaction is retained in virtual storage).

After the coordinator receives the votes from all its subordinates, it initiates
the second phase of the protocol. If all the votes were YES VOTES, then the
coordinator moves to the committing state by force-writing a commit record
and sending COMMIT messages to all the subordinates. The completion of the
force-write takes the transaction to its commit point. Once this point is passed
the user can be told that the transaction has been committed. If the coordinator
had received even one NO VOTE, then it moves to the aborting state by force-
writing an abort record and sends ABORTS to [only) all the subordinates that
are in the prepared state or have not responded to the PREPARE. Each
subordinate, after receiving a COMMIT, moves to the committing state,

’ For ease of exposition, we assume that each site participating in a distributed transaction has only
one process of that transaction. However, the protocols presented here have been implemented in
R*, where this assumption is relaxed to permit more than one such process per site.
21n cases where the user or the coordinator wants to abort the transaction, the latter sends an
ABORT message to each of the subordinates. If a transaction is resubmitted after being aborted, it is
given a new name.

ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986.

382 l C. Mohan et al.

force-writes a commit record, sends an acknowledgment (ACK) message to the
coordinator, and then commits the transaction and “forgets” it. Each subordinate,
after receiving an ABORT, moves to the aborting state, force-writes an abort
record, sends an ACK to the coordinator, and then aborts the transaction and
“forgets” it. The coordinator, after receiving the ACKs from all the subordinates
that were sent a message in the second phase (remember that subordinates who
voted NO do not get any ABORTS in the second phase), writes an end record and
“forgets” the transaction.

By requiring the subordinates to send AC%, the coordinator ensures that all
the subordinates are aware of the final outcome. By forcing their commit/abort
records before sending the ACKs, the subordinates make sure that they will never
be required (while recoveripg from a processor failure) to ask the coordinator
about the final outcome after having acknowledged a COMMIT/ABORT. The
general principle on which the protocols described in this paper are based is that
if a subordinate acknowledges the receipt of any particular message, then it
should make sure (by forcing a log record with the information in that message
before sending the ACK) that it will never ask the coordinator about that piece
of information. If this principle is not adhered to, transaction atomicity may not
be guaranteed.

The log records at each site contain the type (prepare, end, etc.) of the record,
the identity of the process that writes the record, the name of the transaction,
the identity of the coordinator, the names of the exclusive locks held by the
writer in the case of prepare records, and the identities of the subordinates in
the case of the commit/abort records written by the coordinator.

To summarize, for a committing transaction, during the execution of the
protocol, each subordinate writes two records (prepare and commit, both of which
are forced) and sends two messages (YES VOTE and ACK). The coordinator
sends two messages (PREPARE and COMMIT) to each subordinate and writes
two records (commit, which is forced, and end, which is not).

Figure 1 shows the message flows and log writes for an example transaction
following 2P.

2.2 2P and Failures

Let us now consider site and communication link failures. We assume that at
each active site a recovery process exists and that it processes all messages from
recovery processes at other sites and handles all the transactions that were
executing the commit protocol at the time of the last failure of the site. We
assume that, as part of recovery from a crash, the recovery process at the
recovering site reads the log on stable storage and accumulates in virtual storage
information relating to transactions that were executing the commit protocol at
the time of the crash.3 It is this information in virtual storage that is used to
answer queries from other sites about transactions that had their coordinators
at this site and to send unsolicited information to other sites that had subordi-
nates for transactions that had their coordinators at this site. Having the

3 The extent of the log that has to be read on restart can be controlled by taking checkpoints during
normal operation [14, 151. The log is scanned forward starting from the last checkpoint before the
crash until the end of the log.

ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986.

Transaction Management in the R’ Distributed Database Management System l 383

2P Example

Coordinator Subordinate
PREPARE

Fig. 1. Message flows and log writes in 2P. The names in
italics indicate the types of log records written. An * next to
the record type means that the record is forced to stable
storage.

information in virtual storage allows remote site inquiries to be answered quickly.
There will be no need to consult the log to answer the queries.

When the recovery process finds that it is in the prepared state for a particular
transaction, it periodically tries to contact the coordinator site to find out how
the transaction should be resolved. When the coordinator site resolves a trans-
action and lets this site know the ‘final outcome, the recovery process takes the
steps outlined before for a subordinate when it receives an ABORT/COMMIT.
If the recovery process finds that a transaction was executing at the time of the
crash and that no commit protocol log record had been written, then the recovery
process neither knows nor cares whether it is dealing with a subordinate or the
coordinator of the transaction. It aborts that transaction by “undoing” its actions,
if any, using the UNDO log records, writing an abort record, and “forgetting” it.4
If the recovery process finds a transaction in the committing (respectively,
aborting) state, it periodically tries to send the COMMIT (ABORT) to all the
subordinates that have not acknowledged and awaits their ACKs. Once all the

4 It should be clear now why a subordinate cannot send a YES VOTE first and then write a prepare
record, and why a coordinator cannot send a COMMIT first and then write the commit record. If
such actions were permitted, then a failure after the message sending but before the log write may
result in the wrong action being taken at restart; some sites might have committed and others may
abort.

ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986.

384 9 C. Mohan et al.

ACKs are received, the recovery process writes the end record and “forgets” the
transaction.

In addition to the workload that the recovery process accumulates by reading
the log during restart, it may be handed over some transactions during normal
operation by local coordinator and subordinate processes that notice some link
or remote site failures during the commit protocol (see [I$%] for information
relating to how such failures are noticed). We assume that all failed sites
ultimately recover.

If the coordinator process notices the failure of a subordinate while waiting for
the latter to send its vote, then the former aborts the transaction by taking the
previously outlined steps. If the failure occurs when the coordinator is waiting to
get an ACK, then the coordinator hands the transaction over to the recovery
process.

If a subordinate notices the failure of the coordinator before the former sent a
YES VOTE and moved into the prepared state, then it aborts the transaction
(this is called the unilateral abort feature). On the other hand, if the failure occurs
after the subordinate has moved into the prepared state, then the subordinate
hands the transaction over to the recovery process.

When a recovery process receives an inquiry message from a prepared
subordinate site, it looks at its information in virtual storage. If it has information
that says the transaction is in the aborting or committing state, then it sends
the appropriate response. The natural question that arises is what action should
be taken if no information is found in virtual storage about the transaction.
Let us see when such a situation could arise. Since both COMMITS and ABORTS
are being acknowledged, the fact that the inquiry is being made means that the
inquirer had not received and processed a COMMIT/ABORT before the inquiree
“forgot” the transaction. Such a situation comes about when (1) the inquiree
sends out PREPARES, (2) it crashes before receiving all the votes and deciding
to commit/abort, and (3) on restart, it aborts the transaction and does not inform
any of the subordinates. As mentioned before, on restart, the recipient of an
inquiry cannot tell whether it is a coordinator or subordinate, if no commit
protocol log records exist for the transaction. Given this fact, the correct response
to an inquiry in the no information case is an ABORT.

2.3 Hierarchical 2P

2P as described above is inadequate for use in systems where the transaction
execution model is such that multilevel (>2) trees of processes are possible, as in
R* and ENCOMPASS [8]. Each process communicates directly with only its
immediate neighbors in the tree, that is, parent and children. In fact, a process
would not even know about the existence of its nonneighbor processes. There is
a simple extension of 2P that would work in this scenario. In the hierarchical
version of 2P, the root process that is connected to the user/application acts only
as a coordinator, the leaf processes act only as subordinates, and the nonleaf,
nonroot processes act as both coordinators (for their child processes) and sub-
ordinates (for their parent processes). The root process and the leaf processes
act as in nonhierarchical 2P. A nonroot, nonleaf process after receiving a
PREPARE propagates it to its subordinates and only after receiving their votes
ACM Transactions on Database Systems, Vol. 11, No. 4, December 19%.

Transaction Management in the R” Distributed Database Management System l 385

does it send its combined (i.e., subtree) vote to its coordinator. The type of the
subtree vote is determined by the types of the votes of the subordinates and the
type of the vote of the subtree’s root process. If any vote is a NO VOTE, then
the subtree vote is a NO VOTE also (in this case, the subtree root process, after
sending the subtree vote to its coordinator, sends ABORTS to all those subordi-
nates that voted YES). If none of the votes is a NO VOTE, then the subtree vote
is a YES VOTE. A nonroot, nonleaf process in the prepared state, on receiving
an ABORT or a COMMIT, propagates it to its subordinates after force-writing
its commit record and sending the ACK to its coordinator.

3. THE PRESUMED ABORT PROTOCOL

In Section 2.2 we noticed that, in the absence of any information about a
transaction, the recovery process orders an inquiring subordinate to abort. A
careful examination of this scenario reveals the fact that it is safe for a coordinator
to “forget” a transaction immediately after it makes the decision to abort it (e.g.,
by receiving a NO VOTE) and to write an abort record.’ This means that the
abort record need not be forced (both by the coordinator and each of the
subordinates), and no ACKs need to be sent (by the subordinates) for ABORTS.
Furthermore, the coordinator need not record the names of the subordinates in
the abort record or write an end record after an abort record. Also, if the
coordinator notices the failure of a subordinate while attempting to send an
ABORT to it, the coordinator does not need to hand the transaction over to the
recovery process. It will let the subordinate find out about the abort when the
recovery process of the subordinate’s site sends an inquiry message. Note that
the changes that we have made so far to the 2P protocol have not changed the
performance (in terms of log writes and message sending) of the protocol with
respect to committing transactions.

Let us now consider completely or partially read-only transactions and see how
we can take advantage of them. A transaction is partially read-only if some
processes of the transaction do not perform any updates to the database while
the others do. A transaction is (completely) read-only if no process of the
transaction performs any updates. We do not need to know before the transaction
starts whether it is read-only or not.6 If a leaf process receives a PREPARE and
it finds that it has not done any updates (i.e., no UNDO/REDO log records have
been written), then it sends a READ VOTE, releases its locks, and “forgets” the
transaction. The subordinate writes no log records. As far as it is concerned, it
does not matter whether the transaction ultimately gets aborted or committed.
So the subordinate, who is now known to the coordinator to be read-only, does
not need to be sent a COMMIT/ABORT by the coordinator. A nonroot, nonleaf
sends a READ VOTE only if its own vote and those of its subordinates’ are also
READ VOTES. Otherwise, as long as none of the latter is a NO VOTE, it sends
a YES VOTE.

’ Remember that in 2P the coordinator (during normal execution) “forgets” an abort only after it is
sure that all the subordinates are aware of the abort decision.
6 If the program contains conditional statements, the same program during different executions may
be either read-only or update depending on the input parameters and the database state.

ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986.

386 l C. Mohan et al.

Root Process

(read-only1

cmmil*
- COMMITTING

end L

Leaf Process

Non-Root, Non-Leaf Process

abort

ccmamif x
___I) COMMITTING

end I

State Changes and Log Writes

for Presumed Abort

Fig. 2. The names in italics on the arcs of the state-transition diagrams indicate the types of log
records written. An * next to the record type means that the record is forced to stable storage. No log
records are written during some transitions. In such cases, information in parentheses indicates under
what circumstances such transitions take place. IDLE is the initial and final state for each process.

There will not be a second phase of the protocol if the root process is read-
only and it gets only READ VOTES. In this case the root process, just like the
other processes, writes no log records for the transaction. On the other hand, if
the root process or one of its subordinates votes YES and none of the others vote
NO, then the root process behaves as in 2P. But note that it is sufficient for a
nonleaf process to include in the commit record only the identities of those
subordinates (if any) that voted YES (only those processes will be in the
prepared state, and hence only they will need to be sent COMMITS). If a nonleaf
process or one of its subordinates votes NO, then the former behaves as described
earlier in this section.

To summarize, for a (completely) read-only transaction, none of the processes
write any log records, but each one of the nonleaf processes sends one message
(PREPARE) to each subordinate and each one of the nonroot processes sends
one message (READ VOTE).

For a committing partially read-only transaction, the root process sends two
messages (PREPARE and COMMIT) to each update subordinate and one mes-
sage (PREPARE) to each of the read-only subordinates. Each one of the nonleaf,
ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986.

Transaction Management in the R* Distributed Database Management System l 387

Presumed Commit Example Presumed Abort Example

Fig. 3. Message flows and log writes in PA and PC. A (update/read-only) is the root of the process
tree with B (update) as its child. C (read-only) is the leaf of the tree and the child of B.

nonroot processes that is the root of an update subtree sends two messages
(PREPARE and COMMIT) to each update subordinate, one message (PRE-
PARE) to each of the other subordinates, and two messages (YES VOTE and
ACK) to its coordinator. Each one of the nonleaf, nonroot processes that is the
root of a read-only subtree behaves just like the corresponding processes in a
completely read-only transaction following PA. Each one of the nonleaf processes
writes three records (prepare and commit, which are forced, and end, which is
not) if there is at least one update subordinate, and only two records (prepare
and commit, which are forced) if the nonleaf process itself is an update one and
it does not have any update subordinates. A read-only leaf process behaves just
like the one in a completely read-only transaction following PA, and an update
leaf process behaves like a subordinate of a committing transaction in 2P.

By making the above changes to hierarchical 2P, we have generated the PA
protocol. The name arises from the fact that in the no information case the
transaction is presumed to have aborted, and hence the recovery process’s
response to an inquiry is an ABORT. Figure 2 shows the state transitions and log
writes performed by the different processes following PA. Figure 3 shows the
message flows and log writes for an example transaction following PA.

4. THE PRESUMED COMMIT PROTOCOL

Since most transactions are expected to commit, it is only natural to wonder if,
by requiring ACKs for ABORTS, commits could be made cheaper by eliminating
the ACKs for COMMITS. A simplistic idea that comes to mind is to require that
ABORTS be acknowledged, while COMMITS need not be, and also that abort
records be forced while commit records need not be by the subordinates. The
consequences are that, in the no information case, the recovery process responds
with a COMMIT when a subordinate inquiries. There is, however, a problem
with this approach.

Consider the situation when a root process has sent the PREPARES, one
subordinate has gone into the prepared state, and before the root process is
able to collect all the votes and make a decision, the root process crashes. Note

ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986.

388 l C. Mohan et al.

that so far the root process would not have written any commit protocol log
records. When the crashed root process’s site recovers, its recovery process will
abort this transaction and “forget” it without informing anyone, since no
information is available about the subordinates. When the recovery process of
the prepared subordinate’s site then inquires the root process’s site, the latter’s
recovery process would respond with a COMMIT,7 causing an unacceptable
inconsistency.

The way out of this problem is for each coordinator (i.e., nonleaf process) to
record the names of its subordinates safely before any of the latter could get into
the prepared state. Then, when the coordinator site aborts on recovery from a
crash that occurred after the sending of the PREPARES (but before the coordi-
nator moved into the prepared state, in the case of the nonroot coordinators),
the restart process will know who to inform (and get ACKs) about the abort.
These modifications give us the PC protocol. The name arises from the fact that
in the no information case the transaction is presumed to have committed and
hence the response to an inquiry is a COMMIT.

In PC, a nonleaf process behaves as in PA except (1) at the start of the first
phase (i.e., before sending the PREPARES) it force-writes a collecting record,
which contains the names of all the subordinates, and moves into the collecting
state; (2) it force-writes only abort records (except in the case of the root process,
which force-writes commit records also); (3) it requires ACKs only for ABORTS
and not for COMMITS; (4) it writes an end record only after an abort record (if
the abort is done after a collecting record is written) and not after a commit
record; (5) only when in the aborting state will it, on noticing a subordinate’s
failure, hand over the transaction to the restart process; and (6) in the case of a
(completely) read-only transaction, it would not write any records at the end of
the first phase in PA, but in PC it would write a commit record and then “forget”
the transaction.

The subordinates behave as in PA except that now they force-write only abort
records and not commit records, and they ACK only ABORTS and not COMMITS.
On restart, if the recovery process finds, for a particular transaction, a collecting
record and no other records following it, then it force-writes an abort record,
informs all the subordinates, gets ACKs from them, writes the end record, and
“forgets” the transaction. In the no information case, the recovery process
responds to an inquiry with a COMMIT.

To summarize, for a (completely) read-only transaction, each one of the nonleaf
processes writes two records (collecting, which is forced, and commit, which is
not) and sends one message (PREPARE) to each subordinate. Furthermore, each
one of the nonleaf, nonroot processes sends one more message (READ VOTE).
The leaf processes write no log records, but each one of them sends one message
(READ VOTE) to its coordinator.

‘Note that, as far as the recovery process is concerned, this situation is the same as when a root
process, after force-writing a commit record (which now will not contain the names of the subordi-
nates), tries to inform a prepared subordinate, finds it has crashed, and therefore “forgets” the
transaction (i.e., does not hand it to the recovery process). Later on, when the subordinate inquires,
the recovery process would find no information and hence would respond with a COMMIT.

ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986.

Transaction Management in the R’ Distributed Database Management System l 389

Root Process Leaf Process

CmIwrvMO
m abo+(

IDLE- COLLECTING- ABORTING

Non-Root, Non-Leaf Process

prCpZr*. abort+

IDLE - COLLECTING- PREPARED- ABORTING

cornmU (read-c&y)
abort

and

State Changes and Log Writes
for Presumed Comnit

Figure 4

For a committing partially read-only transaction, the root process writes two
records (collecting and commit, both of which are forced) and sends two messages
(PREPARE and COMMIT) to each subordinate that sent a YES VOTE and one
message (PREPARE) to each one of the other subordinates. Each one of the
nonleaf, nonroot processes that is the root of an update subtree sends two
messages (PREPARE and COMMIT) to each subordinate that sent a YES
VOTE, one message (PREPARE) to each one of the other subordinates, and one
message (YES VOTE) to its coordinator, and it writes three records (collecting
and prepared, which are forced, and commit, which is not).< Read-only leaf
processes, and processes that are roots of read-only subtrees, behave just like the
corresponding processes in a completely read-only transaction. An update leaf
process sends one message (YES VOTE) and writes two records (prepare, which
is forced, and commit, which is not).

Figure 4 shows the state transitions and log writes performed by the different
processes following PC. Figure 3 shows the message flows and log writes for an
example transaction following PC.

ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986.

390 l C. Mohan et al.

U - Update Transaction

R - Read-Only Transaction

RS - Read-Only Subordinate

US - Update Subordihate

mrnroIp - m Records Written, n of Them Forced

o For a Coordinator: I of Messages Sent to Each RS

For a Subordinate: I of Messages Sent to

Coordinator

P # of Messages Sent to Each US

Fig. 5. Comparison of log I/O and messages for committing two-level process tree transac-
tions with 2P, PA, and PC.

5. DISCUSSION

In the table of Figure 5 we summarize the performance of 2P, PA, andSC with
respect to committing update and read-only transactions that have two-level
process trees. Note that as far as 2P is concerned all transactions appear to be
completely update transactions and that under all circumstances PA is better
than 2P. It is obvious that PA performs better than PC in the case of (completely)
read-only transactions (saving the coordinator two log writes, including a force)
and in the case of partially read-only transactions in which only the coordinator
does any updates (saving the coordinator a force-write). In both cases, PA and
PC require the same number of messages to be sent. In the case of a transaction
with only one update subordinate, PA and PC are equal in terms of log writes,
but PA requires an extra message (ACK sent by the update subordinate). For a
transaction with n > 1 update subordinates, both PA and PC require the same
number of records to be written, but PA will force n - 1 times when PC will not.
These correspond to the forcing of the commit records by the subordinates. In
addition, PA will send n extra messages (AC!%).
ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986.

Transaction Management in the R* Distributed Database Management System l 391

Depending on the transaction mix that is expected to be run against a particular
distributed database, the choice between PA and PC can be made. It should also
be noted that the choice could be made on a transaction-by-transaction basis
(instead of on a systemwide basis) at the time of the start of the first phase by
the root process.’ At the time of starting a transaction, the user could give a
hint(not a guarantee) that it is likely to be read-only, in which case PA could be
chosen; otherwise PC could be chosen.

It should be pointed out that our commit protocols are blocking [26] in that
they require a prepared process that has noticed the failure of its coordinator
to wait until it can reestablish communication with its coordinator’s site to
determine the final outcome (commit or abort) of the commit processing for that
transaction. We have extended, but not implemented, PA and PC to reduce the
probability of blocking by allowing a prepared process that encounters a
coordinator failure to ask its peers about the transaction outcome. The extensions
require an additional phase in the protocols and result in more messages and/or
synchronous log writes even during normal times. In [23] we have proposed an
approach to dealing with the blocking problem in the context of the Highly
Available Systems project in our laboratory. This approach makes use of Byzan-
tine Agreement protocols. To some extent the results of [9] support our conclu-
sion that blocking commit protocols are not undesirable.

To handle the rare situation in which a blocked process holds up too many
other transactions from gaining access to its locked data, we have provided an
interface that allows the operator to find out the identities of the prepared
processes and to forcibly commit or abort them. Of course, the misuse of this
facility could lead to inconsistencies caused by parts of a transaction being
committed while the rest of the transaction is aborted. In cases where a link
failure is the cause of blocking, the operator at the blocked site could use the
telephone to find out the coordinator site’s decision and force the same decision
at his or her site.

Given that we have our efficient commit protocols PA and PC, and the fact
that remote updates are expected or postulated to be infrequent, the time spent
executing the commit protocol is going to be small compared to the total time
spent executing the whole transaction. Furthermore, site and link failures cannot
be frequent or long-duration events in a well-designed and well-managed distrib-
uted system. So the probability of the failure of a coordinator happening after it
sent PREPARES, thereby blocking the subordinates that vote YES in the
prepared state until its recovery, is going to be very low.

In R*, each site has one transaction manager (TM) and one or more database
managers (DBMS). Each DBM is very much like System R [5] and performs
similar functions. TM is a new (to R*) component and its function is to manage
the commit protocol, perform local and global deadlock detection, and assign
transaction IDS to new transactions originating at that site. So far we have
pretended that there is only one log file at each site. In fact, the TM and the

‘If this approach is taken (as we have done in R*), then the nonleaf processes should include the
name of the protocol chosen in the PREPARE message, and all processes should include this name
in the first commit protocol log record that each one writes. The name should also be included in the
inquiry messages sent by restart processes, and this information is used by a recovery process in
responding to an inquiry in the no information case.

ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986.

392 l C. Mohan et al.

DBMS each have their own log files. A transaction process executes both the TM
code and one DBM’s code (for each DBM accessed by a transaction, one process
is created). The DBM incarnation of the process should be thought of as the
child of the (local) TM incarnation of the same process. When the process
executes the TM code, it behaves like a nonleaf node in the process tree, and it
writes only commit-protocol-related records in the TM log. When the process
executes the DBM code, it behaves like a leaf node in the process tree, and it
writes both UNDO/REDO records and commit-protocol-related records. When
different processes communicate with each other during the execution of the
commit protocol, it is actually the TM incarnations of those processes, not the
DBM incarnations, that communicate. The leaf nodes of the process tree in this
scenario are always DBM incarnations of the processes, and the nonleaf nodes
are always TM incarnations of the processes.

In cases where the TM and the DBMS at a given site make use of the same
file for inserting log information of all the transactions at that site (i.e., a common
log), we wanted to benefit from the fact that the log records inserted during the
execution of the commit protocol by the TM and the DBMS would be in a certain
order, thereby avoiding some synchronous log writes (currently, in R*, the commit
protocols have been designed and implemented to take advantage of the situation
when the DBMS and the TM use the same log). For example, a DBM need not
force-write itsprepare record since the subsequent force-write of the TM’sprepare
record into the same log will force the former to disk. Another example is in the
case of PC, when a process and all its subordinates are at the same site. In this
case, the former does not have to force-write its collecting record since the force
of the collecting/prepared record by a subordinate will force it out.

With a common log, in addition to explicitly avoiding some of the synchronous
writes, one can also benefit from the batching effect of more log records being
written into a single file. Whenever a log page in the virtual memory buffers fills
up, we write it out immediately to stable storage.

If we assume that processes of a transaction communicate with each other
using virtual circuits (as in R* [20]), and that new subordinate processes may be
created even at the time of receipt of a PREPARE message by a process (e.g., to
install updates at the sites of replicated copies), then it seems reasonable to use
the tree structure to send the commit-protocol-related messages also (i.e., not
flatten the multilevel tree into a two-level tree just for the purposes of the commit
protocol). This approach avoids the need to set up any new communication
channels just for use by the commit protocol. Furthermore, there is no need to
make one process in each site become responsible for dealing with commit-related
messages for different transactions (as in ENCOMPASS [8]).

Just as the R* DBMS take checkpoints periodically to bound DBM restart
recovery time [14], the R* TM also takes its own checkpoints. The TM’s
checkpoint records contain the list of active processes that are currently executing
the commit protocol and those processes that are in recovery (i.e., processes in
the prepared/collecting state and processes waiting to receive AC& from
subordinates). Note that we do not have to include those transactions that have
not yet started executing the commit protocol. TM checkpoints are taken without
completely stopping all TM activity (this is in contrast with what happens in the
R* DBMS). During site restart recovery, the last TM checkpoint record is read
ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986.

Transaction Management in the R’ Distributed Database Management System l 393

by a recovery process, and a transaction table is initialized with its contents.
Then the TM log is scanned forward and, as necessary, new entries are added to
the transaction table or existing entries are modified/deleted. Unlike in the case
of the DBM log (see [14]), there is no need to examine the portion of the TM
log before the last checkpoint. The time of the next TM checkpoint depends on
the number of transactions initiated since the last checkpoint, the amount of log
consumed since the last checkpoint, and the amount of space still available in
the circular log file on disk.

6. DEADLOCK MANAGEMENT IN R*

The distributed 2PL concurrency control protocol is used in R*. Data are locked
where they are stored. There is no separate lock manager process. All locking-
related information is maintained in shared storage where it is accessible to the
processes of transactions. The processes themselves execute the locking-related
code and synchronize one another. Since many processes of a transaction might
be concurrently active in one or more sites, more than one lock request might be
made concurrently by a transaction. It is still the case that each process of a
transaction will be requesting only one lock at a time. A process might wait for
one of two reasons: (1) to obtain a lock and (2) to receive a message from a cohort
process of the same transaction? In this scenario, deadlocks, including distrib-
uted/global ones, are a real possibility. Once we chose to do deadlock detection
instead of deadlock avoidance/prevention, it was only natural, for reliability
reasons, to use a distributed algorithm for global deadlock detecti0n.i’

In R*, there is one deadlock detector (DD) at each site. The DDs at different
sites operate asynchronously. The frequencies at which local and global deadlock
detection searches are initiated can vary from site to site. Each DD wakes up
periodically and looks for deadlocks after gathering the wait-for information
from the local DBMS and the communication manager. If the DD is looking for
multisite deadlocks during a detection phase, then any information about Poten-
tial Global (i.e., multisite) Deadlock Cycles (PGDCs) received earlier from other
sites is combined with the local information. No information gathered/generated
during a deadlock detection phase is retained for use during a subsequent
detection phase of the same DD. Information received from a remote DD is
consumed by the recipient, at the most, during one deadlock detection phase.
This is necessary in order to make sure that false information sent by a remote
DD, which during many subsequent deadlock detection phases may not have
anything to send, is not consumed repeatedly by a DD, resulting in the repeated
detection of, possibly, false deadlocks. If, due to the different deadlock detection
frequencies of the different DDs, information is received from multiple phases of
a particular remote DD before it is consumed by the recipient, then only that
remote DD’s last phase’s information is retained for consumption by the recipi-
ent. This is because the latest information is the best information.

The result of analyzing the wait-for information could be the discovery of some
local/global deadlocks and some PGDCs. Each PGDC is a list of transactions

9 All other types of waits are not dealt with by the deadlock detector.
I0 We refer the reader to other papers for discussions concerning deadlock detection versus other
approaches [3, 4, 241.

ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986.

394 l C. Mohan et al.

(not processes) in which each transaction, except the last one, is on a lock wait
on the next transaction in the list. In addition, the first transaction’s one local
process is known to be expected to send response data to its cohort at another
site, and the last transaction’s one local process is known to be waiting to receive
response data from its cohort at another site. This PGDC is sent to the site on
which the last transaction’s local process is waiting if the first transaction’s name
is lexicographically less than the last transaction’s name; otherwise, the PGDC
is discarded. Thus wait-for information travels only in the direction of the
real/potential deadlock cycle, and on the average, only half the sites involved in
a global deadlock send information around the cycle. In general, in this algorithm
only one site will detect a given global deadlock.

Once a global deadlock is detected, the interesting question is how to choose a
victim. While one could use detailed cost measures for transactions and choose
as the victim the transaction with the least cost (see [4] for some performance
comparisons), the problem is that such a transaction might not be in execution
at the site where the global deadlock is detected. Then, the problem would be in
identifying the site that has to be informed about the victim so that the latter
could be aborted. Even if information about the locations of execution of every
transaction in the wait-for graph were to be sent around with the latter, or if we
pass along the cycle the identity of the victim, there would still be a delay and
cost involved in informing remote sites about the nonlocal victim choice. This
delay would cause an increase in the response times of the other transactions
that are part of the deadlock cycle. Hence, in order to expedite the breaking of
the cycle, one can choose as the victim a transaction that is executing locally,
assuming that the wait-for information transmission protocol guarantees the
existence of such a local transaction. The latter is the characteristic of the
deadlock detection protocol of R* [6, 241, and hence we choose a local victim. If
more than one local transaction could be chosen as the victim, then an appropriate
cost measure (e.g., elapsed time since transaction began execution) is used to
make the choice. If one or more transactions are involved in more than one
deadlock, no effort is made to choose as the victim a transaction that resolves
the maximum possible number of deadlocks.

Depending on whether or not (1) the wait-for information transmission among
different sites is synchronized and (2) the nodes of the wait-for graph are
transactions or individual processes of a transaction, false deadlocks might be
detected. In R* transmissions are not synchronized and the nodes of the graph
are transactions. Since we do not expect false deadlocks to occur frequently, we
treat every detected deadlock as a true deadlock.

Even though the general impression might be that our database systems release
all locks of a transaction only at the end of the transaction, in fact, some locks
(e.g., short duration page-level locks when data are being locked at the tuple-
level and locks on nonleaf nodes of the indices) are released before all the locks
are acquired. This means that when a transaction is aborting it will have to
reacquire those locks to perform its undo actions. Since a transaction could get
into a deadlock any time it is requesting locks, if we are not careful we could
have a situation in which we have a deadlock involving only aborting transactions.
It would be quite messy to resolve such a deadlock. To avoid this situation, we
ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986.

Transaction Management in the R* Distributed Database Management System l 395

permit, at any time, only one aborting transaction to be actively reacquiring
locks in a given DBM. While the above-mentioned potential problem had to be
dealt with even in System R, it is somewhat complicated in R*. We have to
ensure that in a global deadlock cycle there is at least one local transaction that
is not already aborting and that could be chosen as the victim.

This reliable, distributed algorithm for detecting global deadlocks is operational
now in R*.

7. CURRENT STATUS

The R* implementation has reached a mature state, providing support for
snapshots [1, 21, distributed views [7], migration of tables, global deadlock
detection, distributed query compilation and processing [20], and crash recovery.
Currently there is no support for replicated or fragmented data. The prototype
is undergoing experimental evaluations [211.

REFERENCES

1. ADIBA, M. Derived relations: A unified mechanism for views, snapshots and distributed data.
Res. Rep. RJ2881, IBM, San Jose, Calif., July 1980.

2. ADIBA, M., AND LINDSAY, B. Database snapshots. In Proceedings of the 6th International
Conference on Very Large Data Bases (Montreal, Oct. 1980). IEEE Press, New York, 1980,
86-91.

3. AGRAWAL, R., AND CAREY, M. The performance of concurrency control and recovery algorithms
for transaction-oriented database systems. Database Eng. 8, 2 (June 1985), 58-67.

4. AGRAWAL, R., CAREY, M., AND MCVOY, L. The performance of alternative strategies for dealing
with deadlocks in database management systems. Tech. Rep. 590, Dept. of Computer Sciences,
Univ. of Wisconsin, Madison, Mar. 1985.

5. ASTRAHAN, M., BLASGEN, M., CHAMBERLIN, D., GRAY, J., KING, F., LINDSAY, B., LORIE, R.,
MEHL, J., PRICE, T., PUTZOLU, F., SCHKOLNICK, M., SELINGER, P., SLUT& D., STRONG, R.,
TIBERIO, P., TRAIGER, I., WADE, B., AND YOST, R. System R: A relational data base manage-
ment system. Computer 12,5 (May 1979), 43-48.

6. BEERI, C., AND OBERMARCK, R. A resource class-independent deadlock detection algorithm. In
Proceedings of the 7th International Conference on Very Large Data Bases (Cannes, Sept. 1981).
IEEE Press, New York, 1981, 166-178.

7. BERTINO, E., HAAS, L., AND LINDSAY, B. View management in distributed data base systems.
In Proceedings of the 9th International Conference on Very Large Data Bases (Florence, Oct.
1983) VLDB Endowment, 1983, 376-378. Also available as Res. Rep. RJ3851, IBM, San Jose,
Calif., Apr. 1983.

8. BORR, A. Transaction monitoring in ENCOMPASS: Reliable distributed transaction process-
ing. In Proceedings of the 7th International Conference on Very Large Data Bases (Cannes, Sept.
1981). IEEE Press, New York, 1981,155-165.

9. COOPER, E. Analysis of distributed commit protocols. In Proceedings of the ACM SZGMOD
International Conference on Management of Data (Orlando, Fla., June 1982). ACM, New York,
1982,175-183.

10. ESWARAN, K. P., GRAY, J. N., LORIE, R., A., AND TRAIGER, I. L. The notions of consistency
and predicate locks in a database system. Commun. ACM 19,ll (Nov. 1976), 624-633.

11. GAWLICK, D., AND KINKADE, D. Varieties of concurrency control in IMS/VS fast path. Database
Eng. 8,2 (June 1985), 3-10.

12. GRAY, J. Notes on data base operating systems. In Operating Systems-An Advanced Course.
Lecture Notes in Computer Science, vol. 60. Springer-Verlag, New York, 1978.

13. GRAY, J. The transaction concept: Virtues and limitations. In Proceedings of the 7th Znternu-
tied Conference on Very Large Data Bases (Cannes, Oct. 1981). IEEE Press, New York, 1981,
144-154.

ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986.

396 l C. Mohan et al.

14. GRAY, J., MCJONES, P., BLASGEN, M., LINDSAY, B., LORIE, R., PRICE, T., PIJTZOLU, F., AND
TRAIGER, I. The recovery manager of the system R database manager. ACM Comput. Surv. 13,
2 (June 1981), 223-242.

15. HAERDER, T., AND REUTER, A. Principles of transaction oriented database recovery-A tax-

onomy. ACM Comput. Surv. 15,4 (Dec. 1983), 287-317.
16. HAMMER, M., AND SHIPMAN, D. Reliability mechanisms for SDD-1: A system for distributed

databases. ACM Trans. Database Syst. 5,4 (Dec. 1980), 431-466.
17. LAMPSON, B. Atomic transactions. In Distributed Systems-Architecture and Implementation.

Lecture Notes in Computer Science, vol. 100, B. Lampson, Ed. Springer-Verlag, New York, 1980,
246-265.

18. LINDSAY, B. G., HAAS, L. M., MOHAN, C., WILMS, P. F., AND YOST, R. A. Computation and
communication in R*: A distributed database manager. ACM Trans. Comput. Syst. 2, 1 (Feb.
19&L), 24-38. Also Res. Rep. RJ3740, IBM, San Jose, Calif., Jan. 1983.

19. LINDSAY, B., SELINGER, P., GALTIERI, C., GRAY, J., LORIE, R., PUTZOLU, F., TRAIGER, I., AND
WADE, B. Single and multi-site recovery facilities. In Distributed Data Bases, I. W. Draffan and
F. Poole, Eds. Cambridge University Press, New York, 1980. Also available as Notes on distributed
databases. Res. Rep. RJ2571, IBM, San Jose, Calif., July 1979.

20. LOHMAN, G., MOHAN, C., HAAS, L., DANIELS, D., LINDSAY, B., SELINGER, P., AND WILMS,
P. Query processing in R*. In Query Processing in Database Systems, W. Kim, D. Reiner, and
D. Batory, Eds. Springer-Verlag, New York, 1984. Also Res. Rep. RJ4272, IBM, Apr. 1984.

21. MACKERT, L., AND LOHMAN, G. Index scans using a finite LRU buffer: A validated I/O model.
Res. Rep. RJ4836, IBM, San Jose, Calif., Sept. 1985.

22. MOHAN, C. Tutorial: Recent Advances in Distributed Data Bose Management. IEEE catalog
number EH0218-8, IEEE Press, New York, 1984.

23. MOHAN, C., STRONG, R., AND FINKELSTEIN, S. Method for distributed transaction commit and
recovery using Byzantine agreement within clusters of processors. In Proceedings of the 2nd ACM
SZGACT/SZGOPS Symposium on Principles of Distributed Computing (Montreal, Aug. 1983).
ACM, New York, 1983, 89-103. Reprinted in ACM/SIGOPS Operating Systems Review, July
1985. Also Res. Rep. RJ3882, IBM, San Jose, Calif., June 1983.

24. OBERMARCK, R. Distributed deadlock detection algorithm. ACM Trans. Database Syst. 7, 2
(June 1982), 187-208.

25. ROTHNIE, J. B., JR., BERNSTEIN, P. A., Fox, S., GOODMAN, N., HAMMER, M., LANDERS, T. A.,
REEVE, C., SHIPMAN, D. W., AND WONG, E. Introduction to a system for distributed databases
(SDD-1). ACM Trans. Database Syst. 5, 1 (Mar. 1980), 1-17.

26. SKEEN, D. Nonblocking commit protocols. In Proceedings of the ACM/SZGMOD International
Conference on Management of Data (Ann Arbor, Mich., May 1981). ACM, New York, 1981,
133-142.

27. SKEEN, D. A quorum-based commit protocol. In Proceedings of the 6th Berkeley Workshop on
Distributed Data Management and Computer Networks (May 1982). Lawrence Berkeley Labora-
tories, 1982, 69-90.

28. STONEBRAKER, M. Concurrency control and consistency of multiple copies of data in distributed
INGRES. IEEE Trans. Softw. Eng. 5,3 (May 1979), 235-258.

Received September 1985; revised July 1986; accepted July 1986

ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986.

