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1. INTRODUCTION 

R* is an experimental, distributed database management system (DDBMS) 
developed and operational at the IBM San Jose Research Laboratory (now 
renamed the IBM Almaden Research Center) 118, 201. In a distributed database 
system, the actions of a transaction (an atomic unit of consistency and recovery 
[13]) may occur at more than one site. Our model of a transaction, unlike that 
of some other researchers’ [25, 281, permits multiple data manipulation and 
definition statements to constitute a single transaction. When a transaction 
execution starts, its actions and operands are not constrained. Conditional 
execution and ad hoc SQL statements are available to the application program. 
The whole transaction need not be fully specified and made known to the system 
in advance. A distributed transaction commit protocol is required in order to 
ensure either that all the effects of the transaction persist or that none of the 
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effects persist, despite intermittent site or communication link failures. In other 
words, a commit protocol is needed to guarantee the uniform commitment of 
distributed transaction executions. 

Guaranteeing uniformity requires that certain facilities exist in the distributed 
database system. We assume that each process of a transaction is able to 
provisionally perform the actions of the transaction in such a way that they can 
be undone if the transaction is or needs to be aborted. Also, each database of the 
distributed database system has a log that is used to recoverably record the state 
changes of the transaction during the execution of the commit protocol and the 
transaction’s changes to the database (the UNDO/REDO log 114, 151). The 
log records are carefully written sequentially in a file that is kept in atoMe 
(nonvolatile) storage [17]. 

When a log record is written, the write can be done synchronously or asyn- 
chronously. In the former case, called forcing a log record, the forced log record 
and all preceding ones are immediately moved from the virtual memory buffers 
to stable storage. The transaction writing the log record is not allowed to continue 
execution until this operation is completed. This means that, if the site crashes 
(assuming that a crash results in the loss of the contents of the virtual memory) 
after the force-write has completed, then the forced record and the ones preceding 
it will have survived the crash and will be available, from the stable storage, 
when the site recovers. It is important to be able to “batch” force-writes for high 
performance [ 111. R* does rudimentary batching of force-writes. 

On the other hand, in the asynchronous case, the record gets written to virtual 
memory buffer storage and is allowed to migrate to the stable storage later on 
(due to a subsequent force or when a log page buffer fills up). The transaction 
writing the record is allowed to continue execution before the migration takes 
place. This means that, if the site crashes after the log write, then the record 
may not be available for reading when the site recovers. An important point to 
note is that a synchronous write increases the response time of the transaction 
compared to an asynchronous write. Hereafter, we refer to the latter as simply a 
write and the former as a force-write. 

Several commit protocols have been proposed in the literature, and some have 
been implemented [8, 16, 17, 19, 23, 26, 271. These are variations of what has 
come to be known as the two-phase (2P) commit protocol. These protocols differ 
in the number of messages sent, the time for completion of the commit processing, 
the level of parallelism permitted during the commit processing, the number of 
state transitions that the protocols go through, the time required for recovery 
once a site becomes operational after a failure, the number of log records written, 
and the number of those log records that are force-written to stable storage. In 
general, these numbers are expressed as a function of the number of sites or 
processes involved in the execution of the distributed transaction. 

Some of the desirable characteristics in a commit protocol are (1) guaranteed 
transaction atomicity always, (2) ability to “forget” outcome of commit processing 
after a short amount of time, (3) minimal overhead in terms of log writes and 
message traffic, (4) optimized performance in the no-failure case, (5) exploitation 
of completely or partially read-only transactions, and (6) maximizing the ability 
to perform unilateral aborts. 
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This paper concentrates on the performance aspects of commit protocols, 
especially the logging and communication performance during no-failure situa- 
tions. We have been careful in describing when and what type of log records are 
written. The discussions of commit protocols in the literature are very vague, if 
there is any mention at all, about this crucial (for correctness and performance) 
aspect of the protocols. We also exploit the read-only property of the complete 
transaction or some of its processes, In such instances, one can benefit from the 
fact that for such processes of the transaction it does not matter whether the 
transaction commits or aborts, and hence they can be excluded from the second 
phase of the commit protocol. This also means that the (read) locks acquired by 
such processes can be released during the first phase. No a priori assumptions 
are made about the read-only nature of transactions. Such information is discov- 
ered only during the first phase of the commit protocol. 

Here, we suggest that complicated protocols developed for dealing with rare 
kinds of failures during commit coordination are not worth the costs that they 
impose on the processing of distributed transactions during normal times (i.e., 
when no failures occur). Multilevel hierarchical commit protocols are also sug- 
gested to be more natural than the conventional two-level (one coordinator and 
a set of subordinates) protocols. This stems from the fact that the distributed 
query processing algorithms are efficiently implemented as a tree of cooperating 
processes. 

With these goals in mind, we extended the conventional 2P commit protocol 
to support a tree of processes [18] and defined the Presumed Abort (PA) and the 
Presumed Commit (PC) protocols to improve the performance of distributed 
transaction commit. 

R*, which is an evolution of the centralized DBMS System R [5], like its 
predecessor, supports transaction serializability and uses the two-phase locking 
(2PL) protocol [lo] as the concurrency control mechanism. The use of 2PL 
introduces the possibility of deadlocks. R*, instead of preventing deadlocks, 
allows them (even distributed ones) to occur and then resolves them by deadlock 
detection and victim transaction abort. 

Some of the desirable characteristics in a distributed deadlock detection 
protocol are (1) all deadlocks are resolved in spite of site and link failures, 
(2) each deadlock is detected only once, (3) overhead in terms of messages 
exchanged is small, and (4) once a distributed deadlock is detected the time taken 
to resolve it (by choosing a victim and aborting it) is small. 

The general features of the global deadlock detection algorithm used in R* are 
described in [24]. Here we concentrate on the specific implementation of that 
distributed algorithm in R* and the solution adopted for the global deadlock 
victim selection problem. In general, as far as global deadlock management is 
concerned, we suggest that if distributed detection of global deadlocks is to be 
performed then, in the event of a global deadlock, it makes sense to choose as 
the victim a transaction that is local to the site of detection of that deadlock (in 
preference to, say, the “youngest” transaction which may be a nonlocal trans- 
action), assuming that such a local transaction exists. 

The rest of this paper is organized as follows. First, we give a careful presen- 
tation of 2P. Next, we derive from 2P in a stepwise fashion the two new protocols, 
namely, PA and PC. We then present performance comparisons, optimizations, 
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and extensions of PA and PC. Next, we present the R* approach to global 
deadlock detection and resolution. We then conclude by outlining the current 
status of R*. 

2. THE TWO-PHASE COMMIT PROTOCOL 

In 2P, the model of a distributed transaction execution is such that there is one 
process, called the coordinator, that is connected to the user application and a 
set of other processes, called the subordinates. During the execution of the commit 
protocol the subordinates communicate only with the coordinator, not among 
themselves. Transactions are assumed to have globally unique names. The 
processes are assumed to have globally unique names (which also indicate the 
locations of the corresponding processes; the processes do not migrate from site 
to site).’ All the processes together accomplish the actions of a distributed 
transaction. 

2.1 2P Under Normal Operation 

First, we describe the protocol without considering failures. When the user decides 
to commit a transaction, the coordinator, which receives a commit-transaction 
command from the user, initiates the first phase of the commit protocol by 
sending PREPARE messages, in parallel, to the subordinates to determine 
whether they are willing to commit the transaction.2 Each subordinate that is 
willing to let the transaction be committed first force-writes a prepare log record 
and then sends a YES VOTE to the coordinator and waits for the final decision 
(commit/abort) from the coordinator. The process is then said to be in the 
prepared state, and it cannot unilaterally commit or abort the transaction. Each 
subordinate that wants to have the transaction aborted force-writes an abort 
record and sends a NO VOTE to the coordinator. Since a NO VOTE acts like a 
veto, the subordinate knows that the transaction will definitely be aborted by 
the coordinator. Hence the subordinate does not need to wait for a coordinator 
response before aborting the local effects of the transaction. Therefore, the 
subordinate aborts the transaction, releases its locks, and “forgets” it (i.e., no 
information about this transaction is retained in virtual storage). 

After the coordinator receives the votes from all its subordinates, it initiates 
the second phase of the protocol. If all the votes were YES VOTES, then the 
coordinator moves to the committing state by force-writing a commit record 
and sending COMMIT messages to all the subordinates. The completion of the 
force-write takes the transaction to its commit point. Once this point is passed 
the user can be told that the transaction has been committed. If the coordinator 
had received even one NO VOTE, then it moves to the aborting state by force- 
writing an abort record and sends ABORTS to [only) all the subordinates that 
are in the prepared state or have not responded to the PREPARE. Each 
subordinate, after receiving a COMMIT, moves to the committing state, 

’ For ease of exposition, we assume that each site participating in a distributed transaction has only 
one process of that transaction. However, the protocols presented here have been implemented in 
R*, where this assumption is relaxed to permit more than one such process per site. 
21n cases where the user or the coordinator wants to abort the transaction, the latter sends an 
ABORT message to each of the subordinates. If a transaction is resubmitted after being aborted, it is 
given a new name. 
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force-writes a commit record, sends an acknowledgment (ACK) message to the 
coordinator, and then commits the transaction and “forgets” it. Each subordinate, 
after receiving an ABORT, moves to the aborting state, force-writes an abort 
record, sends an ACK to the coordinator, and then aborts the transaction and 
“forgets” it. The coordinator, after receiving the ACKs from all the subordinates 
that were sent a message in the second phase (remember that subordinates who 
voted NO do not get any ABORTS in the second phase), writes an end record and 
“forgets” the transaction. 

By requiring the subordinates to send AC%, the coordinator ensures that all 
the subordinates are aware of the final outcome. By forcing their commit/abort 
records before sending the ACKs, the subordinates make sure that they will never 
be required (while recoveripg from a processor failure) to ask the coordinator 
about the final outcome after having acknowledged a COMMIT/ABORT. The 
general principle on which the protocols described in this paper are based is that 
if a subordinate acknowledges the receipt of any particular message, then it 
should make sure (by forcing a log record with the information in that message 
before sending the ACK) that it will never ask the coordinator about that piece 
of information. If this principle is not adhered to, transaction atomicity may not 
be guaranteed. 

The log records at each site contain the type (prepare, end, etc.) of the record, 
the identity of the process that writes the record, the name of the transaction, 
the identity of the coordinator, the names of the exclusive locks held by the 
writer in the case of prepare records, and the identities of the subordinates in 
the case of the commit/abort records written by the coordinator. 

To summarize, for a committing transaction, during the execution of the 
protocol, each subordinate writes two records (prepare and commit, both of which 
are forced) and sends two messages (YES VOTE and ACK). The coordinator 
sends two messages (PREPARE and COMMIT) to each subordinate and writes 
two records (commit, which is forced, and end, which is not). 

Figure 1 shows the message flows and log writes for an example transaction 
following 2P. 

2.2 2P and Failures 

Let us now consider site and communication link failures. We assume that at 
each active site a recovery process exists and that it processes all messages from 
recovery processes at other sites and handles all the transactions that were 
executing the commit protocol at the time of the last failure of the site. We 
assume that, as part of recovery from a crash, the recovery process at the 
recovering site reads the log on stable storage and accumulates in virtual storage 
information relating to transactions that were executing the commit protocol at 
the time of the crash.3 It is this information in virtual storage that is used to 
answer queries from other sites about transactions that had their coordinators 
at this site and to send unsolicited information to other sites that had subordi- 
nates for transactions that had their coordinators at this site. Having the 

3 The extent of the log that has to be read on restart can be controlled by taking checkpoints during 
normal operation [14, 151. The log is scanned forward starting from the last checkpoint before the 
crash until the end of the log. 
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2P Example 

Coordinator Subordinate 
PREPARE 

Fig. 1. Message flows and log writes in 2P. The names in 
italics indicate the types of log records written. An * next to 
the record type means that the record is forced to stable 
storage. 

information in virtual storage allows remote site inquiries to be answered quickly. 
There will be no need to consult the log to answer the queries. 

When the recovery process finds that it is in the prepared state for a particular 
transaction, it periodically tries to contact the coordinator site to find out how 
the transaction should be resolved. When the coordinator site resolves a trans- 
action and lets this site know the ‘final outcome, the recovery process takes the 
steps outlined before for a subordinate when it receives an ABORT/COMMIT. 
If the recovery process finds that a transaction was executing at the time of the 
crash and that no commit protocol log record had been written, then the recovery 
process neither knows nor cares whether it is dealing with a subordinate or the 
coordinator of the transaction. It aborts that transaction by “undoing” its actions, 
if any, using the UNDO log records, writing an abort record, and “forgetting” it.4 
If the recovery process finds a transaction in the committing (respectively, 
aborting) state, it periodically tries to send the COMMIT (ABORT) to all the 
subordinates that have not acknowledged and awaits their ACKs. Once all the 

4 It should be clear now why a subordinate cannot send a YES VOTE first and then write a prepare 
record, and why a coordinator cannot send a COMMIT first and then write the commit record. If 
such actions were permitted, then a failure after the message sending but before the log write may 
result in the wrong action being taken at restart; some sites might have committed and others may 
abort. 
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ACKs are received, the recovery process writes the end record and “forgets” the 
transaction. 

In addition to the workload that the recovery process accumulates by reading 
the log during restart, it may be handed over some transactions during normal 
operation by local coordinator and subordinate processes that notice some link 
or remote site failures during the commit protocol (see [I$%] for information 
relating to how such failures are noticed). We assume that all failed sites 
ultimately recover. 

If the coordinator process notices the failure of a subordinate while waiting for 
the latter to send its vote, then the former aborts the transaction by taking the 
previously outlined steps. If the failure occurs when the coordinator is waiting to 
get an ACK, then the coordinator hands the transaction over to the recovery 
process. 

If a subordinate notices the failure of the coordinator before the former sent a 
YES VOTE and moved into the prepared state, then it aborts the transaction 
(this is called the unilateral abort feature). On the other hand, if the failure occurs 
after the subordinate has moved into the prepared state, then the subordinate 
hands the transaction over to the recovery process. 

When a recovery process receives an inquiry message from a prepared 
subordinate site, it looks at its information in virtual storage. If it has information 
that says the transaction is in the aborting or committing state, then it sends 
the appropriate response. The natural question that arises is what action should 
be taken if no information is found in virtual storage about the transaction. 
Let us see when such a situation could arise. Since both COMMITS and ABORTS 
are being acknowledged, the fact that the inquiry is being made means that the 
inquirer had not received and processed a COMMIT/ABORT before the inquiree 
“forgot” the transaction. Such a situation comes about when (1) the inquiree 
sends out PREPARES, (2) it crashes before receiving all the votes and deciding 
to commit/abort, and (3) on restart, it aborts the transaction and does not inform 
any of the subordinates. As mentioned before, on restart, the recipient of an 
inquiry cannot tell whether it is a coordinator or subordinate, if no commit 
protocol log records exist for the transaction. Given this fact, the correct response 
to an inquiry in the no information case is an ABORT. 

2.3 Hierarchical 2P 

2P as described above is inadequate for use in systems where the transaction 
execution model is such that multilevel (>2) trees of processes are possible, as in 
R* and ENCOMPASS [8]. Each process communicates directly with only its 
immediate neighbors in the tree, that is, parent and children. In fact, a process 
would not even know about the existence of its nonneighbor processes. There is 
a simple extension of 2P that would work in this scenario. In the hierarchical 
version of 2P, the root process that is connected to the user/application acts only 
as a coordinator, the leaf processes act only as subordinates, and the nonleaf, 
nonroot processes act as both coordinators (for their child processes) and sub- 
ordinates (for their parent processes). The root process and the leaf processes 
act as in nonhierarchical 2P. A nonroot, nonleaf process after receiving a 
PREPARE propagates it to its subordinates and only after receiving their votes 
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does it send its combined (i.e., subtree) vote to its coordinator. The type of the 
subtree vote is determined by the types of the votes of the subordinates and the 
type of the vote of the subtree’s root process. If any vote is a NO VOTE, then 
the subtree vote is a NO VOTE also (in this case, the subtree root process, after 
sending the subtree vote to its coordinator, sends ABORTS to all those subordi- 
nates that voted YES). If none of the votes is a NO VOTE, then the subtree vote 
is a YES VOTE. A nonroot, nonleaf process in the prepared state, on receiving 
an ABORT or a COMMIT, propagates it to its subordinates after force-writing 
its commit record and sending the ACK to its coordinator. 

3. THE PRESUMED ABORT PROTOCOL 

In Section 2.2 we noticed that, in the absence of any information about a 
transaction, the recovery process orders an inquiring subordinate to abort. A 
careful examination of this scenario reveals the fact that it is safe for a coordinator 
to “forget” a transaction immediately after it makes the decision to abort it (e.g., 
by receiving a NO VOTE) and to write an abort record.’ This means that the 
abort record need not be forced (both by the coordinator and each of the 
subordinates), and no ACKs need to be sent (by the subordinates) for ABORTS. 
Furthermore, the coordinator need not record the names of the subordinates in 
the abort record or write an end record after an abort record. Also, if the 
coordinator notices the failure of a subordinate while attempting to send an 
ABORT to it, the coordinator does not need to hand the transaction over to the 
recovery process. It will let the subordinate find out about the abort when the 
recovery process of the subordinate’s site sends an inquiry message. Note that 
the changes that we have made so far to the 2P protocol have not changed the 
performance (in terms of log writes and message sending) of the protocol with 
respect to committing transactions. 

Let us now consider completely or partially read-only transactions and see how 
we can take advantage of them. A transaction is partially read-only if some 
processes of the transaction do not perform any updates to the database while 
the others do. A transaction is (completely) read-only if no process of the 
transaction performs any updates. We do not need to know before the transaction 
starts whether it is read-only or not.6 If a leaf process receives a PREPARE and 
it finds that it has not done any updates (i.e., no UNDO/REDO log records have 
been written), then it sends a READ VOTE, releases its locks, and “forgets” the 
transaction. The subordinate writes no log records. As far as it is concerned, it 
does not matter whether the transaction ultimately gets aborted or committed. 
So the subordinate, who is now known to the coordinator to be read-only, does 
not need to be sent a COMMIT/ABORT by the coordinator. A nonroot, nonleaf 
sends a READ VOTE only if its own vote and those of its subordinates’ are also 
READ VOTES. Otherwise, as long as none of the latter is a NO VOTE, it sends 
a YES VOTE. 

’ Remember that in 2P the coordinator (during normal execution) “forgets” an abort only after it is 
sure that all the subordinates are aware of the abort decision. 
6 If the program contains conditional statements, the same program during different executions may 
be either read-only or update depending on the input parameters and the database state. 
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Root Process 

(read-only1 

cmmil* 
- COMMITTING 

end L 

Leaf Process 

Non-Root, Non-Leaf Process 

abort 

ccmamif x 
___I) COMMITTING 

end I 

State Changes and Log Writes 

for Presumed Abort 

Fig. 2. The names in italics on the arcs of the state-transition diagrams indicate the types of log 
records written. An * next to the record type means that the record is forced to stable storage. No log 
records are written during some transitions. In such cases, information in parentheses indicates under 
what circumstances such transitions take place. IDLE is the initial and final state for each process. 

There will not be a second phase of the protocol if the root process is read- 
only and it gets only READ VOTES. In this case the root process, just like the 
other processes, writes no log records for the transaction. On the other hand, if 
the root process or one of its subordinates votes YES and none of the others vote 
NO, then the root process behaves as in 2P. But note that it is sufficient for a 
nonleaf process to include in the commit record only the identities of those 
subordinates (if any) that voted YES (only those processes will be in the 
prepared state, and hence only they will need to be sent COMMITS). If a nonleaf 
process or one of its subordinates votes NO, then the former behaves as described 
earlier in this section. 

To summarize, for a (completely) read-only transaction, none of the processes 
write any log records, but each one of the nonleaf processes sends one message 
(PREPARE) to each subordinate and each one of the nonroot processes sends 
one message (READ VOTE). 

For a committing partially read-only transaction, the root process sends two 
messages (PREPARE and COMMIT) to each update subordinate and one mes- 
sage (PREPARE) to each of the read-only subordinates. Each one of the nonleaf, 
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Presumed Commit Example Presumed Abort Example 

Fig. 3. Message flows and log writes in PA and PC. A (update/read-only) is the root of the process 
tree with B (update) as its child. C (read-only) is the leaf of the tree and the child of B. 

nonroot processes that is the root of an update subtree sends two messages 
(PREPARE and COMMIT) to each update subordinate, one message (PRE- 
PARE) to each of the other subordinates, and two messages (YES VOTE and 
ACK) to its coordinator. Each one of the nonleaf, nonroot processes that is the 
root of a read-only subtree behaves just like the corresponding processes in a 
completely read-only transaction following PA. Each one of the nonleaf processes 
writes three records (prepare and commit, which are forced, and end, which is 
not) if there is at least one update subordinate, and only two records (prepare 
and commit, which are forced) if the nonleaf process itself is an update one and 
it does not have any update subordinates. A read-only leaf process behaves just 
like the one in a completely read-only transaction following PA, and an update 
leaf process behaves like a subordinate of a committing transaction in 2P. 

By making the above changes to hierarchical 2P, we have generated the PA 
protocol. The name arises from the fact that in the no information case the 
transaction is presumed to have aborted, and hence the recovery process’s 
response to an inquiry is an ABORT. Figure 2 shows the state transitions and log 
writes performed by the different processes following PA. Figure 3 shows the 
message flows and log writes for an example transaction following PA. 

4. THE PRESUMED COMMIT PROTOCOL 

Since most transactions are expected to commit, it is only natural to wonder if, 
by requiring ACKs for ABORTS, commits could be made cheaper by eliminating 
the ACKs for COMMITS. A simplistic idea that comes to mind is to require that 
ABORTS be acknowledged, while COMMITS need not be, and also that abort 
records be forced while commit records need not be by the subordinates. The 
consequences are that, in the no information case, the recovery process responds 
with a COMMIT when a subordinate inquiries. There is, however, a problem 
with this approach. 

Consider the situation when a root process has sent the PREPARES, one 
subordinate has gone into the prepared state, and before the root process is 
able to collect all the votes and make a decision, the root process crashes. Note 
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that so far the root process would not have written any commit protocol log 
records. When the crashed root process’s site recovers, its recovery process will 
abort this transaction and “forget” it without informing anyone, since no 
information is available about the subordinates. When the recovery process of 
the prepared subordinate’s site then inquires the root process’s site, the latter’s 
recovery process would respond with a COMMIT,7 causing an unacceptable 
inconsistency. 

The way out of this problem is for each coordinator (i.e., nonleaf process) to 
record the names of its subordinates safely before any of the latter could get into 
the prepared state. Then, when the coordinator site aborts on recovery from a 
crash that occurred after the sending of the PREPARES (but before the coordi- 
nator moved into the prepared state, in the case of the nonroot coordinators), 
the restart process will know who to inform (and get ACKs) about the abort. 
These modifications give us the PC protocol. The name arises from the fact that 
in the no information case the transaction is presumed to have committed and 
hence the response to an inquiry is a COMMIT. 

In PC, a nonleaf process behaves as in PA except (1) at the start of the first 
phase (i.e., before sending the PREPARES) it force-writes a collecting record, 
which contains the names of all the subordinates, and moves into the collecting 
state; (2) it force-writes only abort records (except in the case of the root process, 
which force-writes commit records also); (3) it requires ACKs only for ABORTS 
and not for COMMITS; (4) it writes an end record only after an abort record (if 
the abort is done after a collecting record is written) and not after a commit 
record; (5) only when in the aborting state will it, on noticing a subordinate’s 
failure, hand over the transaction to the restart process; and (6) in the case of a 
(completely) read-only transaction, it would not write any records at the end of 
the first phase in PA, but in PC it would write a commit record and then “forget” 
the transaction. 

The subordinates behave as in PA except that now they force-write only abort 
records and not commit records, and they ACK only ABORTS and not COMMITS. 
On restart, if the recovery process finds, for a particular transaction, a collecting 
record and no other records following it, then it force-writes an abort record, 
informs all the subordinates, gets ACKs from them, writes the end record, and 
“forgets” the transaction. In the no information case, the recovery process 
responds to an inquiry with a COMMIT. 

To summarize, for a (completely) read-only transaction, each one of the nonleaf 
processes writes two records (collecting, which is forced, and commit, which is 
not) and sends one message (PREPARE) to each subordinate. Furthermore, each 
one of the nonleaf, nonroot processes sends one more message (READ VOTE). 
The leaf processes write no log records, but each one of them sends one message 
(READ VOTE) to its coordinator. 

‘Note that, as far as the recovery process is concerned, this situation is the same as when a root 
process, after force-writing a commit record (which now will not contain the names of the subordi- 
nates), tries to inform a prepared subordinate, finds it has crashed, and therefore “forgets” the 
transaction (i.e., does not hand it to the recovery process). Later on, when the subordinate inquires, 
the recovery process would find no information and hence would respond with a COMMIT. 
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Root Process Leaf Process 

CmIwrvMO 
m abo+( 

IDLE- COLLECTING- ABORTING 

Non-Root, Non-Leaf Process 

prCpZr*. abort+ 

IDLE - COLLECTING- PREPARED- ABORTING 

cornmU (read-c&y) 
abort 

and 

State Changes and Log Writes 
for Presumed Comnit 

Figure 4 

For a committing partially read-only transaction, the root process writes two 
records (collecting and commit, both of which are forced) and sends two messages 
(PREPARE and COMMIT) to each subordinate that sent a YES VOTE and one 
message (PREPARE) to each one of the other subordinates. Each one of the 
nonleaf, nonroot processes that is the root of an update subtree sends two 
messages (PREPARE and COMMIT) to each subordinate that sent a YES 
VOTE, one message (PREPARE) to each one of the other subordinates, and one 
message (YES VOTE) to its coordinator, and it writes three records (collecting 
and prepared, which are forced, and commit, which is not).< Read-only leaf 
processes, and processes that are roots of read-only subtrees, behave just like the 
corresponding processes in a completely read-only transaction. An update leaf 
process sends one message (YES VOTE) and writes two records (prepare, which 
is forced, and commit, which is not). 

Figure 4 shows the state transitions and log writes performed by the different 
processes following PC. Figure 3 shows the message flows and log writes for an 
example transaction following PC. 
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U - Update Transaction 

R - Read-Only Transaction 

RS - Read-Only Subordinate 

US - Update Subordihate 

mrnroIp - m Records Written, n of Them Forced 

o For a Coordinator: I of Messages Sent to Each RS 

For a Subordinate: I of Messages Sent to 

Coordinator 

P # of Messages Sent to Each US 

Fig. 5. Comparison of log I/O and messages for committing two-level process tree transac- 
tions with 2P, PA, and PC. 

5. DISCUSSION 

In the table of Figure 5 we summarize the performance of 2P, PA, andSC with 
respect to committing update and read-only transactions that have two-level 
process trees. Note that as far as 2P is concerned all transactions appear to be 
completely update transactions and that under all circumstances PA is better 
than 2P. It is obvious that PA performs better than PC in the case of (completely) 
read-only transactions (saving the coordinator two log writes, including a force) 
and in the case of partially read-only transactions in which only the coordinator 
does any updates (saving the coordinator a force-write). In both cases, PA and 
PC require the same number of messages to be sent. In the case of a transaction 
with only one update subordinate, PA and PC are equal in terms of log writes, 
but PA requires an extra message (ACK sent by the update subordinate). For a 
transaction with n > 1 update subordinates, both PA and PC require the same 
number of records to be written, but PA will force n - 1 times when PC will not. 
These correspond to the forcing of the commit records by the subordinates. In 
addition, PA will send n extra messages (AC!%). 
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Depending on the transaction mix that is expected to be run against a particular 
distributed database, the choice between PA and PC can be made. It should also 
be noted that the choice could be made on a transaction-by-transaction basis 
(instead of on a systemwide basis) at the time of the start of the first phase by 
the root process.’ At the time of starting a transaction, the user could give a 
hint(not a guarantee) that it is likely to be read-only, in which case PA could be 
chosen; otherwise PC could be chosen. 

It should be pointed out that our commit protocols are blocking [26] in that 
they require a prepared process that has noticed the failure of its coordinator 
to wait until it can reestablish communication with its coordinator’s site to 
determine the final outcome (commit or abort) of the commit processing for that 
transaction. We have extended, but not implemented, PA and PC to reduce the 
probability of blocking by allowing a prepared process that encounters a 
coordinator failure to ask its peers about the transaction outcome. The extensions 
require an additional phase in the protocols and result in more messages and/or 
synchronous log writes even during normal times. In [23] we have proposed an 
approach to dealing with the blocking problem in the context of the Highly 
Available Systems project in our laboratory. This approach makes use of Byzan- 
tine Agreement protocols. To some extent the results of [9] support our conclu- 
sion that blocking commit protocols are not undesirable. 

To handle the rare situation in which a blocked process holds up too many 
other transactions from gaining access to its locked data, we have provided an 
interface that allows the operator to find out the identities of the prepared 
processes and to forcibly commit or abort them. Of course, the misuse of this 
facility could lead to inconsistencies caused by parts of a transaction being 
committed while the rest of the transaction is aborted. In cases where a link 
failure is the cause of blocking, the operator at the blocked site could use the 
telephone to find out the coordinator site’s decision and force the same decision 
at his or her site. 

Given that we have our efficient commit protocols PA and PC, and the fact 
that remote updates are expected or postulated to be infrequent, the time spent 
executing the commit protocol is going to be small compared to the total time 
spent executing the whole transaction. Furthermore, site and link failures cannot 
be frequent or long-duration events in a well-designed and well-managed distrib- 
uted system. So the probability of the failure of a coordinator happening after it 
sent PREPARES, thereby blocking the subordinates that vote YES in the 
prepared state until its recovery, is going to be very low. 

In R*, each site has one transaction manager (TM) and one or more database 
managers (DBMS). Each DBM is very much like System R [5] and performs 
similar functions. TM is a new (to R*) component and its function is to manage 
the commit protocol, perform local and global deadlock detection, and assign 
transaction IDS to new transactions originating at that site. So far we have 
pretended that there is only one log file at each site. In fact, the TM and the 

‘If this approach is taken (as we have done in R*), then the nonleaf processes should include the 
name of the protocol chosen in the PREPARE message, and all processes should include this name 
in the first commit protocol log record that each one writes. The name should also be included in the 
inquiry messages sent by restart processes, and this information is used by a recovery process in 
responding to an inquiry in the no information case. 
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DBMS each have their own log files. A transaction process executes both the TM 
code and one DBM’s code (for each DBM accessed by a transaction, one process 
is created). The DBM incarnation of the process should be thought of as the 
child of the (local) TM incarnation of the same process. When the process 
executes the TM code, it behaves like a nonleaf node in the process tree, and it 
writes only commit-protocol-related records in the TM log. When the process 
executes the DBM code, it behaves like a leaf node in the process tree, and it 
writes both UNDO/REDO records and commit-protocol-related records. When 
different processes communicate with each other during the execution of the 
commit protocol, it is actually the TM incarnations of those processes, not the 
DBM incarnations, that communicate. The leaf nodes of the process tree in this 
scenario are always DBM incarnations of the processes, and the nonleaf nodes 
are always TM incarnations of the processes. 

In cases where the TM and the DBMS at a given site make use of the same 
file for inserting log information of all the transactions at that site (i.e., a common 
log), we wanted to benefit from the fact that the log records inserted during the 
execution of the commit protocol by the TM and the DBMS would be in a certain 
order, thereby avoiding some synchronous log writes (currently, in R*, the commit 
protocols have been designed and implemented to take advantage of the situation 
when the DBMS and the TM use the same log). For example, a DBM need not 
force-write itsprepare record since the subsequent force-write of the TM’sprepare 
record into the same log will force the former to disk. Another example is in the 
case of PC, when a process and all its subordinates are at the same site. In this 
case, the former does not have to force-write its collecting record since the force 
of the collecting/prepared record by a subordinate will force it out. 

With a common log, in addition to explicitly avoiding some of the synchronous 
writes, one can also benefit from the batching effect of more log records being 
written into a single file. Whenever a log page in the virtual memory buffers fills 
up, we write it out immediately to stable storage. 

If we assume that processes of a transaction communicate with each other 
using virtual circuits (as in R* [20]), and that new subordinate processes may be 
created even at the time of receipt of a PREPARE message by a process (e.g., to 
install updates at the sites of replicated copies), then it seems reasonable to use 
the tree structure to send the commit-protocol-related messages also (i.e., not 
flatten the multilevel tree into a two-level tree just for the purposes of the commit 
protocol). This approach avoids the need to set up any new communication 
channels just for use by the commit protocol. Furthermore, there is no need to 
make one process in each site become responsible for dealing with commit-related 
messages for different transactions (as in ENCOMPASS [8]). 

Just as the R* DBMS take checkpoints periodically to bound DBM restart 
recovery time [14], the R* TM also takes its own checkpoints. The TM’s 
checkpoint records contain the list of active processes that are currently executing 
the commit protocol and those processes that are in recovery (i.e., processes in 
the prepared/collecting state and processes waiting to receive AC& from 
subordinates). Note that we do not have to include those transactions that have 
not yet started executing the commit protocol. TM checkpoints are taken without 
completely stopping all TM activity (this is in contrast with what happens in the 
R* DBMS). During site restart recovery, the last TM checkpoint record is read 
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by a recovery process, and a transaction table is initialized with its contents. 
Then the TM log is scanned forward and, as necessary, new entries are added to 
the transaction table or existing entries are modified/deleted. Unlike in the case 
of the DBM log (see [14]), there is no need to examine the portion of the TM 
log before the last checkpoint. The time of the next TM checkpoint depends on 
the number of transactions initiated since the last checkpoint, the amount of log 
consumed since the last checkpoint, and the amount of space still available in 
the circular log file on disk. 

6. DEADLOCK MANAGEMENT IN R* 

The distributed 2PL concurrency control protocol is used in R*. Data are locked 
where they are stored. There is no separate lock manager process. All locking- 
related information is maintained in shared storage where it is accessible to the 
processes of transactions. The processes themselves execute the locking-related 
code and synchronize one another. Since many processes of a transaction might 
be concurrently active in one or more sites, more than one lock request might be 
made concurrently by a transaction. It is still the case that each process of a 
transaction will be requesting only one lock at a time. A process might wait for 
one of two reasons: (1) to obtain a lock and (2) to receive a message from a cohort 
process of the same transaction? In this scenario, deadlocks, including distrib- 
uted/global ones, are a real possibility. Once we chose to do deadlock detection 
instead of deadlock avoidance/prevention, it was only natural, for reliability 
reasons, to use a distributed algorithm for global deadlock detecti0n.i’ 

In R*, there is one deadlock detector (DD) at each site. The DDs at different 
sites operate asynchronously. The frequencies at which local and global deadlock 
detection searches are initiated can vary from site to site. Each DD wakes up 
periodically and looks for deadlocks after gathering the wait-for information 
from the local DBMS and the communication manager. If the DD is looking for 
multisite deadlocks during a detection phase, then any information about Poten- 
tial Global (i.e., multisite) Deadlock Cycles (PGDCs) received earlier from other 
sites is combined with the local information. No information gathered/generated 
during a deadlock detection phase is retained for use during a subsequent 
detection phase of the same DD. Information received from a remote DD is 
consumed by the recipient, at the most, during one deadlock detection phase. 
This is necessary in order to make sure that false information sent by a remote 
DD, which during many subsequent deadlock detection phases may not have 
anything to send, is not consumed repeatedly by a DD, resulting in the repeated 
detection of, possibly, false deadlocks. If, due to the different deadlock detection 
frequencies of the different DDs, information is received from multiple phases of 
a particular remote DD before it is consumed by the recipient, then only that 
remote DD’s last phase’s information is retained for consumption by the recipi- 
ent. This is because the latest information is the best information. 

The result of analyzing the wait-for information could be the discovery of some 
local/global deadlocks and some PGDCs. Each PGDC is a list of transactions 

9 All other types of waits are not dealt with by the deadlock detector. 
I0 We refer the reader to other papers for discussions concerning deadlock detection versus other 
approaches [3, 4, 241. 
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(not processes) in which each transaction, except the last one, is on a lock wait 
on the next transaction in the list. In addition, the first transaction’s one local 
process is known to be expected to send response data to its cohort at another 
site, and the last transaction’s one local process is known to be waiting to receive 
response data from its cohort at another site. This PGDC is sent to the site on 
which the last transaction’s local process is waiting if the first transaction’s name 
is lexicographically less than the last transaction’s name; otherwise, the PGDC 
is discarded. Thus wait-for information travels only in the direction of the 
real/potential deadlock cycle, and on the average, only half the sites involved in 
a global deadlock send information around the cycle. In general, in this algorithm 
only one site will detect a given global deadlock. 

Once a global deadlock is detected, the interesting question is how to choose a 
victim. While one could use detailed cost measures for transactions and choose 
as the victim the transaction with the least cost (see [4] for some performance 
comparisons), the problem is that such a transaction might not be in execution 
at the site where the global deadlock is detected. Then, the problem would be in 
identifying the site that has to be informed about the victim so that the latter 
could be aborted. Even if information about the locations of execution of every 
transaction in the wait-for graph were to be sent around with the latter, or if we 
pass along the cycle the identity of the victim, there would still be a delay and 
cost involved in informing remote sites about the nonlocal victim choice. This 
delay would cause an increase in the response times of the other transactions 
that are part of the deadlock cycle. Hence, in order to expedite the breaking of 
the cycle, one can choose as the victim a transaction that is executing locally, 
assuming that the wait-for information transmission protocol guarantees the 
existence of such a local transaction. The latter is the characteristic of the 
deadlock detection protocol of R* [6, 241, and hence we choose a local victim. If 
more than one local transaction could be chosen as the victim, then an appropriate 
cost measure (e.g., elapsed time since transaction began execution) is used to 
make the choice. If one or more transactions are involved in more than one 
deadlock, no effort is made to choose as the victim a transaction that resolves 
the maximum possible number of deadlocks. 

Depending on whether or not (1) the wait-for information transmission among 
different sites is synchronized and (2) the nodes of the wait-for graph are 
transactions or individual processes of a transaction, false deadlocks might be 
detected. In R* transmissions are not synchronized and the nodes of the graph 
are transactions. Since we do not expect false deadlocks to occur frequently, we 
treat every detected deadlock as a true deadlock. 

Even though the general impression might be that our database systems release 
all locks of a transaction only at the end of the transaction, in fact, some locks 
(e.g., short duration page-level locks when data are being locked at the tuple- 
level and locks on nonleaf nodes of the indices) are released before all the locks 
are acquired. This means that when a transaction is aborting it will have to 
reacquire those locks to perform its undo actions. Since a transaction could get 
into a deadlock any time it is requesting locks, if we are not careful we could 
have a situation in which we have a deadlock involving only aborting transactions. 
It would be quite messy to resolve such a deadlock. To avoid this situation, we 
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permit, at any time, only one aborting transaction to be actively reacquiring 
locks in a given DBM. While the above-mentioned potential problem had to be 
dealt with even in System R, it is somewhat complicated in R*. We have to 
ensure that in a global deadlock cycle there is at least one local transaction that 
is not already aborting and that could be chosen as the victim. 

This reliable, distributed algorithm for detecting global deadlocks is operational 
now in R*. 

7. CURRENT STATUS 

The R* implementation has reached a mature state, providing support for 
snapshots [ 1, 21, distributed views [7], migration of tables, global deadlock 
detection, distributed query compilation and processing [20], and crash recovery. 
Currently there is no support for replicated or fragmented data. The prototype 
is undergoing experimental evaluations [ 211. 
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